Теория Калуцы приобрела определенную популярность, потому что она оставалась единственной известной идеей, поддерживающей надежду на существование объединенной теории поля. В 1926 году другой математик, Оскар Клайн, усовершенствовал теорию Калуцы, предположив, что квантовая механика, возможно, в состоянии объяснить, почему пятое измерение скручивается в нечто столь маленькое. В действительности его размер должен иметь порядок величины, близкий к постоянной Планка, — должен иметь порядок «планковской длины» 10
-35метров [80].Теория Калуцы-Клайна, как ее стали называть, привлекала физиков в течение некоторого времени. Но невозможность непосредственно убедиться в присутствии дополнительного измерения отравляла им всю радость. По определению теория Калуцы-Клайна находилась в согласии со всеми известными явлениями в гравитации и электромагнетизме
[81]. Ее невозможно было отвергнуть на основе стандартных экспериментов. Но она ничего на самом деле и не добавляла — не предсказывала ничего такого, что можно было бы проверить. От той же проблемы страдают многие попытки объединить существующие законы. Все то, что в них можно проверить, уже известно, а новое проверке не подлежит. Первоначальный энтузиазм пошел на спад.Роковой удар по теории Калуцы-Клайна — не в отношении ее верности, а в отношении того, стоит ли тратить на нее драгоценное время исследований — был нанесен ошеломляющим ростом гораздо более привлекательной теории, в которой можно было делать новые предсказания и экспериментально их проверять. Это была квантовая теория, переживавшая тогда пору своей цветущей молодости.
К 60-м годам двадцатого века, однако, квантовая механика начала сбавлять обороты. Первоначальный прогресс уступил место глубоким парадоксам и необъяснимым наблюдениям. Успех квантовой теории не подлежал сомнению, и на этой основе вскоре возникла «стандартная модель» фундаментальных частиц. Но становилось все труднее найти новые вопросы, на которые был бы хоть какой-нибудь шанс получить ответ. По-настоящему новые идеи трудно было проверить; те идеи, которые допускали проверку, были лишь развитием уже существующих.
Из всех этих исследований возник один весьма изящный основополагающий принцип: ключевую роль в отношении структуры материи на очень малых масштабах играет симметрия. Но важные симметрии фундаментальных частиц — это ни обычные движения эвклидова пространства без деформаций, ни даже лоренцевы преобразования релятивистского пространства-времени. Они включают в себя калибровочные симметрии и суперсимметрии. Кроме того, имеются и другие виды симметрии (вполне в духе тех, что изучал Галуа), действующие перестановками на дискретном множестве объектов.
Каким образом могут существовать различные типы симметрий?
Симметрии всегда образуют группу
[82], но имеется много различных способов, которыми группа может действовать. Она может действовать параллельными переносами или вращениями, перестановками компонент или же обращением направления времени. Физика частиц привела к открытию нового способа, каким могут действовать симметрии, названныеПредставьте себе, что вы отправились в другую страну — назовем ее Дупликатия, — и там вам понадобились деньги. Валютой в Дупликатии является пфуннинг, а обменный курс — два пфуннинга за доллар. Сначала это вас слегка смущает, но потом вы обращаете внимание, что имеется очень простое и очевидное правило для перевода всех транзакций из долларов в пфуннинги: в пфуннингах все стоит ровно в два раза больше, чем вы бы заплатили в долларах.
Тут действует некий вид симметрии. «Законы» денежных транзакций остаются неизменными, если удвоить все числа. При этом, чтобы компенсировать численное удвоение, вам приходиться платить в пфуннингах, а не в долларах. Эта «инвариантность относительно монетарного масштаба» представляет собой глобальную симметрию правил, действующих для денежных транзакций. Если везде произвести одно и то же изменение, то правила останутся инвариантными.
Так, а, допустим, прямо через границу, в соседней Трипликатии, местной валютой является будл, причем их дают три за доллар. Когда вы отправитесь в Трипликатию, соответствующая симметрия потребует умножения всех сумм на три. Но законы коммерции по-прежнему остаются инвариантными.
Таким образом, перед нами «симметрия», которая изменяется в зависимости от места. В Дупликатии надо умножать на два, в Трипликатии — на три. Скорее всего, вы не удивитесь, когда, приехав в Квинтапликатию, узнаете, что там доллар надо умножать на пять. Все эти операции симметрии можно применять одновременно, но каждая пригодна только в соответствующей стране. Законы коммерции остаются инвариантными, надо только интерпретировать числа в соответствии с местной валютой.