Читаем Истина и красота. Всемирная история симметрии. полностью

Виттен начал исследования в квантовой теории поля — в области, представляющей собой первые плоды усилий по согласованию квантовой теории с теорией относительности. Релятивистские эффекты движения там учитываются, но только в плоском пространстве-времени. (А гравитация, которая требует искривленного пространства-времени, не рассматривается.) В 1998 году в своей гиббсовской лекции [103]Виттен сказал, что квантовая теория поля «охватывает большую часть того, что нам известно о законах физики, за исключением гравитации. Семидесятилетняя история ее развития включает в себя много значимых вех — от теории „антиматерии“ до более точного описания атомов и Стандартной Модели физики частиц». Он отметил, что, развитая в большей своей части физиками, квантовая теория поля в значительной степени лишена математической строгости и поэтому не оказала большого влияния на математику как таковую.

Подошло время, продолжал Виттен, исправить этот дефект. Несколько важных областей чистой математики, по сути дела, являются квантовой теорией поля, но в иных одеждах. Собственный вклад Виттена — открытие и анализ топологических квантовых теорий поля — допускал прямую интерпретацию в терминах концепций, изобретенных целым рядом чистых математиков в рамках весьма различных контекстов. Сюда относится эпическое открытие, сделанное английским математиком Саймоном Доналдсоном, что четырехмерные пространства уникальны в том отношении, что допускают существование многих различных «дифференцируемых структур» — систем координат, в которых можно строить дифференциальное исчисление. Среди других аспектов — недавнее крупное открытие в теории узлов, известное как многочлены Джонса [104], явление, называемое зеркальной симметрией в теории многомерных комплексных поверхностей, и несколько областей из современной теории алгебр Ли.

Виттен сделал смелое предсказание — одной из важнейших тем в математике двадцать первого века будет интегрирование в основное течение математики идей из квантовой теории поля: «Перед нами здесь раскинулся обширный горный хребет, большая часть которого все еще скрыта в тумане. В математических теориях сегодняшнего дня видны только самые высокие вершины, возвышающиеся над облаками, и эти восхитительные вершины исследуются в отрыве друг от друга. В дымке все еще скрыт сам хребет, покоящийся на гранитном основании квантовой теории поля, а вместе с ним скрыты и россыпи математических сокровищ».

Филдсовская медаль была присуждена Виттену за открытие нескольких из этих скрытых сокровищ. Среди них — новое улучшенное доказательство «гипотезы о положительности массы», в силу которой гравитационная система с положительной локальной плотностью массы должна иметь положительную полную массу. Это может показаться очевидным, но в квантовом мире масса — тонкая материя. Доказательство этого результата, долго стоявшего на повестке дня, было опубликовано Ричардом Шеном и Шинтаном Яу [105]в 1979 году и принесло Яу Филдсовскую медаль за 1982 год. В новом улучшенном доказательстве Виттена использовалась суперсимметрия. То было первое применение этой концепции к важной математической проблеме.

Суперсимметрию можно понять в терминах старой головоломки, в которой спрашивается, какая пробка подойдет к бутылке, отверстие в которой может быть круглым, квадратным или треугольным. Удивительно, но требуемая форма существует, и стандартный ответ — пробка с круглым основанием, которая сходится к острию как клин. При взгляде снизу она видится окружностью; спереди — квадратом; сбоку — треугольником. Одна форма способна выполнить все три задачи, потому что трехмерный объект может иметь несколько различных «теней», или проекций, в различных направлениях.

Как работает суперсимметрия. Слева: пробка, подходящая к отверстиям трех разных форм. Справа: эффект вращения пробки.

Теперь представим себе флатландца, живущего на «полу» моего рисунка, так что ему видна проекция пробки на пол, но он и не подозревает о других проекциях. В один прекрасный день он, к своему изумлению, обнаруживает, что круглая форма каким-то образом изменилась и стала квадратом. Как такое может быть? Это определенно не симметрия.

Не симметрия — да, во Флатландии. Но когда флатландец отвернулся, кто-то, живущий в трехмерии, повернул пробку так, что ее проекция на пол превратилась в квадрат. При этом в трехмерии вращение является преобразованием симметрии [106]. Так что симметрия в более высокой размерности может иногда объяснить совершенно непостижимое преобразование в более низкой размерности.

Нечто очень похожее происходит в суперсимметрии, но вместо превращения окружности в квадрат фермионы там превращаются в бозоны. Это удивительно. В самом деле, вы можете выполнить вычисления с фермионами, напустить на каждый операцию суперсимметрии и получить результат для бозонов без всяких дополнительных усилий [107]. Или наоборот.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже