Читаем Истина и красота. Всемирная история симметрии. полностью

Попросите Якоби или Гаусса публично высказать свое мнение — не о верности, а о важности этих теорем. Я надеюсь, что со временем появятся люди, которые захотят, к большой пользе для себя, расхлебать всю эту кашу.

Но что же на самом деле сделал Галуа? В чем состояла эта «каша», о которой он говорит в своем последнем письме?

Ответ на этот вопрос занимает центральное место во всем нашем рассказе, и его нелегко выразить в паре предложений. Галуа познакомил математику с новой точкой зрения, он изменил ее содержание и сделал необходимый, но непривычный шаг в сторону абстракции. В руках Галуа математика перестала быть наукой о числах и формах — арифметикой, геометрией и набором связанных с ними идей, таких как алгебра и тригонометрия. Она стала наукой о структурах. То, что было исследованием вещей, стало исследованием процессов!

Не следует приписывать всю заслугу в этой трансформации одному лишь Галуа. Он оказался на гребне волны, которую привели в движение Лагранж, Коши, Руффини и Абель. Но он двигался на ней с таким мастерством, что сделал ее своей собственной; он был первым, кто всерьез осознал — математические вопросы порой легче всего понять, если перенести их в область более абстрактных рассуждений.

Потребовалось некоторое время, чтобы красота и значение результатов Галуа пробили себе дорогу к широкому математическому сознанию. На самом деле их едва не потеряли. Спас их Жозеф Лиувилль, сын капитана Наполеоновской армии, ставший профессором в Коллеж де Франс. Лиувилль выступал перед французской Академией — собранием, которое затеряло или отвергло три мемуара Галуа — летом 1843 года.

«Я надеюсь заинтересовать Академию, — начал он, — рассказом о том, что среди бумаг Эвариста Галуа я обнаружил решение, точность которого не уступает его глубине, такой замечательной задачи: узнать, существует или не существует решение в радикалах…»

Если бы Лиувилль не взял на себя долгий труд разбираться в бумагах неудачливого революционера, нередко неаккуратных и путаных рукописях, и не потратил бы значительное время и немалые усилия на угадывание того, что хотел сказать автор, эти рукописи, скорее всего, исчезли бы вместе с мусором, а теории групп пришлось бы ждать, пока те же идеи откроют заново. Так что математика в большом долгу перед Лиувиллем.

Понимание предложенных Галуа методов росло, рождалась новая мощная математическая концепция — концепция группы. Целая ветвь математики — исчисление симметрий, называемое теорией групп — появилась на свет и с тех пор проникла в каждый уголок математики.


Галуа работал с группами перестановок. Перестановка — это способ переупорядочить список объектов. В его случае объектами были корни алгебраического уравнения. Простейший из содержательных примеров дается кубическим уравнением общего вида, у которого имеются три корня a, bи с. Напомним, что есть шесть способов переставить эти символы и что — следуя Лагранжу и Руффини — можно перемножать любые две перестановки, выполняя их последовательно. Мы видели, например, что cbaxbca = acb.Действуя подобным же образом, можно построить «таблицу умножения» для шести перестановок. Чтобы было яснее видно, что происходит, припишем каждой перестановке имя, например, положим I = abc, R = acb, Q = bac, V = bca, U = cabи P = cba. Тогда таблица умножения будет выглядеть следующим образом.

IUVPQR
IIUVPQR
UUVIRPQ
VVIUQRP
PPQRIUV
QQRPVIU
RRPQUVI

Элемент этой таблицы, стоящий в строке Xи столбце Y, представляет собой произведение XY, получаемое по правилу «сначала Y, потом X».

Галуа понял, что некое очень простое и очевидное свойство этой таблицы оказывается исключительно важным. Произведение любых двух перестановок само является перестановкой; во всей таблице содержатся только символы I, U, V, P, Q, R.Некоторые меньшие наборы, состоящие из перестановок, обладают тем же «групповым свойством» — произведение любых двух перестановок из набора также представляет собой перестановку из этого набора. Галуа назвал такой набор перестановок группой.

Например, набор [I, U, V]дает меньшую таблицу — таблицу умножения для подгруппы из трех перестановок.

IUV
IIUV
UUVI
VVIU

Здесь возникают только те же три символа. В такой ситуации, когда одна группа является частью другой, она называется подгруппой.

Другие подгруппы — а именно [I, P], [I, Q]и [I, R]— содержат только по две перестановки. Имеется также подгруппа [I], состоящая только из I. Можно доказать, что эти шесть подгрупп исчерпывают список подгрупп в группе всех перестановок на шести символах.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже