Читаем Истина и красота. Всемирная история симметрии. полностью

Галуа по максимуму использовал «групповое свойство» своих перестановок. Если применить любые две из них по очереди, то получится какая-то другая. Отсюда следует мощный намек на то, что нам следует делать с нашими шестью симметриями. Мы попарно «перемножим» их и посмотрим, что получится. Напомним соглашение: если Xи Y— два преобразования симметрии, то произведение XY— это то, что получается, когда сначала применяется Y,а потом X.

Пусть, например, мы желаем узнать, что такое VU.Это означает, что сначала к треугольнику применяется U, а потом V. И вот Uосуществляет вращение на 120°, а Vзатем вращает получающийся треугольник на 240°. Тем самым VUосуществляет вращение на 120° + 240° = 360°.

Ой, мы забыли включить это вращение.

Нет, не забыли! Если повернуть треугольник на 360°, то все вернется в точности туда, где было. А в теории групп важен конечный результат, а не путь, которым к нему пришли. На языке симметрий две симметрии считаются одинаковыми, если они приводят к одному и тому же конечному состоянию объекта. Поскольку VUдает тот же эффект, что тождественное преобразование, мы заключаем, что VU = I.

В качестве второго примера рассмотрим, что делает UQ. Преобразования выполняются следующим образом:

Как симметрии равностороннего треугольника соответствуют перестановкам.

Мы видим, чему равен результат перемножения симметрий: он равен P. Значит, UQ = P.

Из наших шести симметрий можно можно образовать тридцать шесть произведений, а вычисления можно свести в таблицу умножения. Получается в точности та же таблица, которая у нас была для шести перестановок корней кубического уравнения.


Обнаруженное совпадение дает пример одного из наиболее мощных методов во всей теории групп. Его истоки — в работах французского математика Камиля Жордана, до известной степени превратившего теорию групп из метода анализа решений уравнений в радикалах в самостоятельный предмет.

Около 1870 года Жордан привлек внимание к тому, что сейчас называют теорией представлений. Для Галуа группы были составлены из перестановок — способов перетасовки символов. Жордан начал задумываться о способах перетасовки более сложных пространств. Среди наиболее фундаментальных пространств в математике имеются многомерные пространства, а их самое важное свойство состоит в существовании прямых линий. Естественный способ преобразования такого пространства состоит в том, чтобы прямые линии оставались прямыми. Никаких изгибов, никаких скручиваний. Имеется много преобразований такого рода — вращения, отражения, изменения масштаба. Все они называются линейными преобразованиями.

Английский юрист и математик Артур Кэли открыл, что любое линейное преобразование можно связать с матрицей — квадратной таблицей из чисел. Любое линейное преобразование трехмерного, например, пространства можно задать, записав таблицу размером 3 на 3 из вещественных чисел. Так что преобразования можно свести к алгебраическим вычислениям.

Теория представлений позволяет начать с группы, которая не состоит из линейных преобразований, и заменить ее некоторой группой, состоящей из линейных преобразований. Преимущество конвертации группы в группу матриц состоит в том, что матричная алгебра является очень глубокой и мощной, и Жордан был первым, кто это увидел.

Взглянем на симметрии треугольника с Жордановой точки зрения. Вместо размещения разных кружков по углам треугольника я расставлю там символы a, b, c,соответствующие корням общего кубического уравнения. Тогда становится очевидным, что каждая симметрия треугольника также переставляет эти символы. Например, вращение Uотправляет abcв cab.

Шесть симметрий треугольника естественно соответствуют шести перестановкам корней a, b, c. Более того, произведение двух симметрий соответствует произведению соответствующих перестановок. Но вращения и отражения в плоскости являются линейными преобразованиями — они сохраняют прямые линии. Так что мы по-другому интерпретировали группу перестановок — представили ее— как группу линейных преобразований, или, что то же самое, как некую группу матриц. Этой идее предстояло привести к глубоким следствиям как в математике так и в физике.

Глава 8

Посредственный инженер и трансцендентный профессор

Симметрия перестала быть туманным ощущением скрытого порядка или художественным восприятием изящества и красоты. Она превратилась в ясную математическую концепцию со строгим логическим определением. Появилась возможность вычислять симметрии и доказывать о них теоремы. Родился новый предмет — теория групп. Погоня человечества за симметрией достигла поворотной точки. В качестве платы за вход в сообщество посвященных требовалась готовность мыслить более концептуально. Концепция группы носила абстрактный характер, на несколько шагов удаленный от традиционного «простого продукта», состоящего из чисел и геометрических форм.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже