Читаем Истина и красота. Всемирная история симметрии. полностью

Данное Линдеманном доказательство трансцендентности числа опиралось на метод, впервые использованный Ламбертом и развитый Эрмитом: придумать подходящий интеграл, вычислить его двумя способами и показать, что если число алгебраическое, то ответы не согласуются. Интеграл был очень тесно связан с тем, который использовал Эрмит, только еще более сложному. Связь между eи выражалась в прекрасном соотношении, открытом Эйлером. Если бы было алгебраическим, то eприобрело бы некоторые новые неожиданные свойства — похожие на свойства алгебраических чисел, но все же отличающиеся от них. Ядро доказательства Линдеманна относилось к числу e, а не к .

С появлением доказательства Линдеманна эта глава математики пришла к своему первому действительно важному выводу. Невозможность квадратуры круга оказалась не более чем побочным эффектом. Гораздо важнее для математиков было понять, почему так происходит. Теперь они могли двигаться вперед и развивать теорию трансцендентных чисел, которая сегодня представляет собой активную (и дьявольски сложную) область исследований. Даже наиболее очевидные и на вид правдоподобные гипотезы о трансцендентных числах остаются по большей части недоказанными.


Вооруженные достижениями Абеля и Галуа, мы можем вернуться к задаче о построении правильных многоугольников. Для каких чисел nможно построить правильный n-угольник циркулем и линейкой? Ответ на этот вопрос весьма необычен.

В Disquisitiones ArithmeticaeГаусс сформулировал необходимые и достаточные условия на целое число n, но доказал только их достаточность. По его утверждению, у него было доказательство, что те же условия являются и необходимыми, но, как и большая часть его результатов, оно осталось неопубликованным. Гаусс в действительности выполнил сложную часть работы, а Ванцель привел недостающие подробности в своей статье 1837 года.

Чтобы лучше понять данный Гауссом ответ, рассмотрим правильный 17-угольник. Что есть такого в числе 17, что позволяет построить правильный многоугольник с 17 сторонами? Почему это невозможно, скажем, для чисел 11 или 13? Заметим, что все эти три числа — простые. Легко показать, что если правильный n-угольник допускает построение, то можно построить правильный p-угольник для каждого простого числа p, на которое делится n. Надо просто взять каждый n/ p-угол. Например, если взять каждую третью вершину в правильном 15-угольнике, получим правильный 5-угольник. Так что имеет смысл рассматривать простое число сторон, а затем получить полное решение, используя результаты для простых чисел.

Число 17 простое, что для начала уже неплохо. Выполненный Гауссом анализ, переформулированный в более современных терминах, основан на том факте, что решения уравнения x 17 - 1 = 0 образуют вершины правильного 17-угольника на комплексной плоскости. У этого уравнения имеется один очевидный корень = 1. Остальные 16 — это корни многочлена 16-й степени, и можно показать, что этот многочлен есть x 16 + x 15 + x 14 + … + x 2 + x + 1. 17-угольник строится путем решения цепочки квадратных уравнений, а это оказывается возможным потому, что 16 есть степень числа 2: 16 = 2 4.

Аналогично в более общем случае аргументы того же типа показывают, что когда p— нечетное простое число, правильный p-угольник допускает построение, если и только если - 1 есть степень числа 2. Такие нечетные простые числа называются (простыми) числами Ферма, потому что Ферма первым взялся их исследовать. Грекам было известно о построении правильного 3-угольника и правильного 5-угольника. Заметим, что 3 - 1 = 2 и 5 - 1 = 4 суть степени числа 2. Результаты греков, таким образом, согласуются с критерием Гаусса, а 3 и 5 — первые два из чисел Ферма. С другой стороны, 7 - 1 = 6, что не есть степень двойки, так что правильный 7-угольник не допускает построения циркулем и линейкой.

Затратив еще немного труда, можно получить характеризацию Гаусса: правильный n-угольник допускает построение, если, и только если, nявляется степенью двойки или же степенью двойки, умноженной на различныепростые числа Ферма.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже