Эта задача оказалась безнадежно сложной — теперь мы знаем, что скорее всего у нее просто нет внятного ответа в том смысле, что нет простой конструкции, которая произвела бы все алгебры Ли в рамках единообразной и прозрачной процедуры. Поэтому Киллингу пришлось согласиться на нечто менее амбициозное: описать основные «кирпичики», из которых можно собрать все алгебры Ли. Это несколько похоже на желание описать все возможные архитектурные стили, но придерживаться при этом некоторого списка из допустимых форм и размеров кирпича.
Эти «кирпичики» известны как
В глазах Киллинга эта классификация была предельной версией чего-то гораздо более общего, и его огорчал ряд ограничительных предположений, которые ему пришлось сделать, чтобы добиться хоть какого-то результата. Особенно ему докучала необходимость предполагать простоту, что заставило его перейти к алгебрам Ли над комплексными числами, а не над вещественными. Первые ведут себя лучше, но менее прямым образом связаны с геометрическими проблемами, владевшими воображением Киллинга. Из-за этих, им же наложенных, ограничений он не считал, что его работа заслуживает опубликования.
Ему удалось установить контакт с Ли, который, впрочем, оказался не слишком плодотворным. Сначала Киллинг написал Клейну, который свел его с помощником Ли Фридрихом Энгелем, в то время работавшим в Христиании. Киллинг и Энгель сразу нашли общий язык, и Энгель превратился в активного сторонника его деятельности, помог ему преодолеть некоторые сложности и призывал развивать свои идеи и дальше. Без Энгеля Киллинг мог бы и забросить это дело.
Сначала Киллинг полагал, что знает полный список простых алгебр Ли и что это алгебры so(
Летом 1886 года Киллинг посетил Лейпциг, где работали Ли и Энгель. К сожалению, между Ли и Киллингом возникли трения; Ли никогда не отдавал должного работам Киллинга и старался принизить их значимость.
Киллинг быстро обнаружил, что его исходное предположение о простых алгебрах Ли было неверным, ибо он открыл новую алгебру, которой соответствует группа Ли, известная сейчас как
Если это казалось странным, то еще более странной была окончательная классификация, которую Киллинг получил зимой 1887 года. К двум бесконечным семействам Киллинг добавил третье — алгебры Ли sp(2
Классификация Киллинга была получена с применением длинных алгебраических рассуждений, с помощью которых всю проблему удалось свести к прекраснейшей задаче из геометрии. Из гипотетических простых алгебр Ли он сумел извлечь конфигурацию точек в многомерном пространстве, известную теперь как
Системы корней в размерности два.
Эти диаграммы обладают высокой степенью симметрии. Они несколько похожи на узоры, которые видны в калейдоскопе, где два зеркала, расположенные под углом друг к другу, создают множественные отражения. Эта схожесть неслучайна, потому что системы корней имеют чудесные, изящные группы симметрии. Известные ныне как группы Вейля (что несправедливо, потому что изобрел их Киллинг), они представляют собой многомерные аналоги узоров, образованных отражаемыми объектами в калейдоскопе.