Один из первых изученных ими оперонов регулирует процесс переваривания клеткой лактозы88. Ключевыми здесь выступают белковые транскрипционные факторы, которые специализируются на блокировании генов. У них есть два «кармана», или места связывания. Один парит в цитоплазме в поисках молекул лактозы. Если он не находит таковых, то другой «карман» связывается с частями ДНК, кодирующими белки, которые расщепляют лактозу, и блокирует их экспрессию. Количество белков-репрессоров, выявляющих лактозу, сообщает клетке, сколько лактозы находится вокруг. Если множеству белков-репрессоров не удается найти лактозу, они фактически останавливают производство белков, переваривающих лактозу. Но если белки-репрессоры захватывают все больше молекул лактозы, то они меняют форму, ослабляют, так сказать, хватку над клеточной ДНК и позволяют генам, переваривающие лактозу, получать выражение. Если уровень лактозы снова упадет, весь процесс пойдет в обратном направлении. Этот изящный механизм отрицательной обратной связи обеспечивает переваривание лактозы при ее изобилии, но запрещает тратить энергию и ресурсы при ее отсутствии. Вот образчик утонченного мышления о будущем, которое опирается на вероятностные решения о грядущих потребностях клетки.
В каждой клетке в любой момент времени возможна слаженная работа миллионов оперонов, которые сочетаются между собой невероятно сложным образом. Некоторые комбинации куда хитроумнее, чем та, которую мы только что рассмотрели. Например, у оперонов может быть несколько белковых «реле», подлежащих включению прежде, чем клетка начнет производить новый белок, так что новый белок будет производиться только в том случае, если выполнены условия A, B и C. Перед нами условие вида «Если А, и В, и С, то D», а в других случаях возможно условие «Если A, или В, или C, то D». Значит, цепочки и сети белков могут действовать как логические схемы. Если достаточное количество этих «реле» собирается вместе, как в компьютере, появляется возможность выполнять множество вычислений. Как отмечает теоретик сложности вычислений Мелани Митчелл, машина, способная связать воедино и правильным образом обилие «и», «или» и «не», может вычислить более или менее все, что поддается вычислению89. Вот так простые биомолекулярные «реле» клетки E. coli выполняют предельно тонкие вычисления, в том числе вероятностные расчеты возможного будущего. Поскольку многие опероны работают одновременно, вычисления в клетках выполняются параллельно. Это означает, что даже простейшие клетки могут вычислять несколько вероятностей в любой момент времени – доступность пищи, температура, внутренняя соленость, необходимость двигаться и так далее.
Возьмем движение в качестве примера действий, которые могут быть вызваны этими вычислениями. Клетки E. coli имеют до шести гладких и мощных «пропеллеров», которые позволяют им либо двигаться вперед, либо беспорядочно «кувыркаться». Подобно сенсорным молекулам, эти «пропеллеры» пронизывают мембраны. Они используют хлыстообразные хвосты, или жгутики, что висят снаружи клетки и могут вращаться со скоростью несколько сотен оборотов в секунду90. Вообразим, что внутренняя поверхность «пропеллерных» молекул начинает улавливать поток белков-посланцев, сообщающих о наличии аспарагиновой кислоты. «Пропеллеры» заработают в унисон, и клетка начнет двигаться вперед. Если же насыщенность аспартатом падает, отдельные «пропеллеры» могут развернуться и отправить клетку «кувыркаться». Затем она выберет новое направление (грубо говоря, методом тыка) и продолжит поиски пищи.
Что сейчас произошло? Мы видели, как организм, слишком крохотный, чтобы его возможно было разглядеть невооруженным глазом, ставит перед собою цели, оценивает текущую ситуацию и принимает довольно верные решения о том, как встречать будущее. Его долгосрочные цели встроены в геном в виде кодов для создания молекулярных устройств, необходимых для достижения краткосрочных целей (поиск пищи). Белковые сенсоры сообщают клетке о продолжающейся охоте на аспартат и другие продукты питания; сети белков оценивают, как идут дела; изменение состава и формы этих белков определяет поведение клетки (кувыркаться или не кувыркаться?). Вся эта последовательность действий развивалась на протяжении миллионов лет, ибо клетки, сохранявшие неподвижность вопреки разумным основаниям для движения, выживали реже, чем те, которые кувыркались, а в геном вида постепенно встраивались более эффективные алгоритмы. Вот почему клеточный механизм мышления о будущем довольно хорошо справляется с прогнозами, потому-то кишечная палочка и выживает уже сотни миллионов лет.
Очень умно, не правда ли? В следующей главе мы рассмотрим, как решают задачу управления будущим многоклеточные организмы, используя новые типы механизмов, что увязывают воедино деятельность миллиардов клеток, каждая из которых не менее умна, чем отдельная клетка кишечной палочки.
Глава 4
Как растения и животные управляют будущим