Генерация потенциалов действия использует обилие энергии от древнего биохимического устройства хемиосмоса, впервые описанного биохимиком Питером Митчеллом в начале 1960-х годов. Мы уже встречали это явление, которое существует с тех пор, как жизнь впервые возникла на Земле, и по сей день происходит в каждой клетке нашего тела. Все клетки способны поддерживать небольшую разницу напряжения на своих мембранах, оттягивая положительно заряженные ионы (кальций или калий) для создания отрицательного внутреннего заряда123
. Тем самым они превращаются в крошечные батареи. Внезапное обратное истечение положительных ионов порождает электрический всплеск потенциала действия. Но постоянная подкачка, необходимая для поддержания разности потенциалов на клеточной мембране, – тяжелая работа; на ее долю приходится 80 процентов энергии, используемой человеческим мозгом. Каждая мысль, которая мелькает в уме, каждая блестящая идея или болезненное воспоминание, каждая модель следующего свидания или собеседования при приеме на работу – все подпитывается хемиосмосом и становится возможными благодаря прокачке заряженных молекул через мембраны миллионов нейронов124.У кончика аксона мы добираемся до того синапса, которым аксон принимает и передает информацию дендриту другого нейрона. Существует два способа передачи информации через синапс: либо быстро, с помощью электрического импульса (это хорошо, когда скорость оповещения важнее обдумывания, как в случае с реакцией на прикосновение к горячему утюгу), либо медленнее и осторожнее, посредством движения отдельных молекул, известных как нейротрансмиттеры, которые проникают сквозь крошечную щель в синапсе. (Почему-то на ум приходит сцена обмена заложниками в шпионской драме.) Оставив позади синаптическую щель, нейротрансмиттеры генерируют небольшой импульс125
. Если новый импульс заряжен отрицательно, он увеличит отрицательный заряд внутри принимающего нейрона, снизив вероятность его возбуждения. Если заряд положительный, то вероятность возбуждения нейрона увеличивается. Но нейрон сработает, то есть передаст сигнал другому нейрону, только после того, как суммирует тормозные и возбуждающие импульсы от десятков или сотен других нейронов, и только в том случае, если сумма не превзойдет определенный порог126. Словно венерина мухоловка решает, сомкнуть ли ей челюсти; подобно венериной мухоловке, нейрон оценивает информацию из разных источников, прежде чем возбудиться или не возбудиться.Потенциалы действия могут передавать сведения со скоростью около девяноста футов в секунду. Это намного медленнее, чем действует современный компьютер. Но качество сигнала не ухудшается, поскольку его передают ретрансляторы, которые в состоянии вести передачу на большие расстояния, подобно в телефоне, когда используется подземный кабель. Вот почему, когда мы ушибаем пальцы ног, боль не ослабевает на пути от пальца ноги к мозгу127
. Нервная система также работает параллельно. В любой момент времени налицо огромное количество потенциалов действия, совместно выполняющих миллионы одновременных вычислений. Параллельные вычисления объясняют, почему в некотором смысле наш мозг по-прежнему мощнее лучших компьютеров.Как запуск всех обозначенных выше потенциалов действия помогает животным творчески и продуктивно думать о вероятном будущем? Организованные в обширные сети, как транзисторы в компьютере, нейроны могут собирать информацию от наших органов чувств, анализировать ее, хранить в памяти, сравнивать с другими воспоминаниями и интерполировать недостающие сведения для построения моделей развития мира. Вообразите, что надо поймать мяч. Вы помните, когда он был брошен и как быстро; ваш ра- зум моделирует вероятную траекторию после интерполяции информации о весе мяча, импульсе и влиянии ветра, а затем рассчитывает нужное местоположение вашей руки.
Воспоминания о прошлых закономерностях являются важными строительными блоками во всех моделях возможного будущего. Нервная система хранит воспоминания в виде более или менее стабильных сетей связанных нейронов. Биолог Эрик Кандел выяснил, как формируются воспоминания, изучая комбинации нейронов у морского моллюска аплизии. Новые методы визуализации, такие как позитронно-эмиссионная томография (ПЭТ) и магнитно-резонансная томография (МРТ, или функциональная МРТ (фМРТ)), позволили исследователям продолжить изучение этих функций, выявлять и наблюдать связи между образующимися и разрушающимися нейронами в режиме реального времени (отдельные части мозга как бы высвечиваются, когда владелец сознания предается разным видам мышления).