В 1932 г. немецкие биохимики О. Варбург и В. Христиан при исследовании ферментативного окисления глюкозо-6-фосфата обнаружили, что для осуществления этого процесса необходимо присутствие кофактора, отличного от козимазы (или кодегидразы I). Они назвали его кодегидразой II (см. также главу 7).
В том же 1932 г. школой О. Варбурга и одновременно венгерскими химиками во главе с А. Сцент-Дьёрдьи были начаты исследования так называемых «желтых ферментов», которые привели к открытию и синтезу Р. Куном рибофлавина (Нобелевская премия, 1938). Исследования Р. Куна и П. Каррера[61]
показали, что рибофлавин идентичен уже известному тогда витамину В2. За этим открытием последовали другие, которые не только подтвердили важную роль витаминов в обеспечении функционирования различных ферментных систем, но позволили расшифровать биохимический механизм многих заболеваний и открыть новые звенья обмена веществ.С исследованиями коферментов брожения связана разработка очень важной концепции о механизме окислительных процессов в организме. Как уже отмечалось, после работ А.Н. Баха общепризнанной стала перекисная теория биологического окисления (см. также главу 7). Однако уже в 1912 г. В.И. Палладин (Ленинская премия, 1929) и немецкий химик Г. Виланд независимо друг от друга разработали новую теорию биологического окисления, в основе которой лежало представление о дегидрировании (отнятии водорода). Включение кислорода, по Палладину-Виланду, происходило лишь на последнем этапе и приводило к окислению до воды отнятого от субстрата водорода. Исследования Г. Эйлера, О. Варбурга и других показали, что к числу дегидрогеназ, широко распространенных в природе, а также коферментов и акцепторов водорода относятся и уже известные кодегидразы I и II.
В течение долгого времени считали, что брожение и дыхание представляют собой совершенно независимые процессы. Однако уже Э. Пфлюгер во второй половине XIX в. высказывал предположение о тесной взаимосвязи этих процессов. Окончательно представления о единстве брожения и дыхания были разработаны С.П. Костычевым (1910), согласно взглядам которого взаимосвязь между ними могла быть представлена следующей схемой:
Работы Костылева (1907, 1911) доказали, что начальные фазы аэробного дыхания должны быть сопряжены с конечными фазами анаэробного распада углеводов.
Первые шаги к расшифровке механизма аэробного дыхания сделал после работ Костычева в 30-х годах А. Сцент-Дьёрдьи (Нобелевская премия, 1937). Исследуя дыхание измельченных тканей сердечной мышцы голубя, отличающейся особенно высокой скоростью окислительных процессов, он обнаружил, что постепенно снижающаяся интенсивность поглощения кислорода измельченными мышцами (гомогенатами) может быть восстановлена добавлением солей некоторых органических кислот (янтарной, фумаровой, яблочной и щавелевоуксусной). Наоборот, очень близкая по строению малоновая кислота подавляет интенсивность процесса. Почти одновременно шведский химик Т. Тунберг показал, что мышцы содержат особые ферменты — дигидрогеназы янтарной, фумаровой и яблочной кислот. В дальнейшем американский биохимик Г.А. Кребс обнаружил, что «эффект Сцент-Дьёрдьи» может быть получен также при добавлении к гомогенатам солей кетоглутаровой и пировиноградной кислот, а также аминокислот — глутаминовой и аспарагиновой. Эти открытия навели на мысль, что перечисленные кислоты последовательно превращаются одна в другую в процессе разложения наиболее сложной из них. При этом происходит постепенное окисление органического вещества. Так, была выявлена последовательность: лимонная кислота ↔
Подобные схемы полупили должную оценку после выяснения принципа использования Энергии организмом на отдельных этапах окисления (вернее, дегидрирования) промежуточных продуктов. Супругам К. и Г. Кори, исследовавшим процессы распада и синтеза гликогена в мышцах, удалось не только расчленить процесс превращения гликогена в глюкозу на отдельные этапы, но и воспроизвести синтез гликогена из глюкозы in vitro. Глюкоза была последовательно превращена с помощью соответствующих ферментов в глюкозо-6-фосфат, глюкозо-1-фосфат и гликоген. Самым важным в этих исследованиях было выяснение роли АТФ (аденозинтрифосфорной кислоты) как донатора фосфатных групп, а также открытие процесса восстановления АТФ и АДФ (аденозиндифосфата) на последней ступени (Нобелевская премия, 1947).