Более распространенной, однако, оказалась гипотеза о восстановительном характере процесса. При этом предполагалось либо непосредственное связывание азота с дикарбоновыми кислотами, превращающимися в аминокислоты (М. Герлах, Дж. Фогель, 1902; Дж. Липман, 1903); либо, согласно теории Г. Виланда (1922; Нобелевская премия, 1927), присоединение молекулой азота атома водорода с образованием диимида и гидразина; либо, согласно взглядам С.П. Костычева (1925–1931), фиксация молекулярного азота азотобактером происходит внеклеточно путем присоединения водорода к азоту при участии восстановительных ферментов; либо, наконец, по С.Н. Виноградскому (1930), молекулярный азот восстанавливается водородом до аммиака (гидрогенизация). Наряду с этим существовала гипотеза (Д. Блом, 1931), что промежуточным продуктом фиксации является гидроксиламин. Эта идея получила затем развитие в лаборатории А. Виртанена (40-е годы; Нобелевская премия, 1945), который полагал, что гидроксиламин, соединяясь с щавелевой кислотой, образует оксим, превращающийся затем в аспарагиновую кислоту. Эта гипотеза была проверена П. Вильсоном (1954) и не получила подтверждения.
В 1941 г. в исследованиях Р. Бёрриса и Ч. Миллера при изучении фиксации молекулярного азота впервые был использован тяжелый изотоп N15
. Эти ученые экспериментально показали, что первым устойчивым продуктом азотфиксации является аммиак. Этот же факт был установлен и на бесклеточных ферментных системах (Л. Мортенсон и др., 1962; Д. Карнахан и др., 1963; А.А. Имшенецкий и др., 1963; и др.). Однако механизм восстановления N2 до NH3 до сегодняшнего дня остается предметом исследований. В настоящее время известно, что участвующие в азотфиксации ферменты представляют собой систему белковых катализаторов, содержащих в своем составе молибден и железо. В клубеньковых бактериях имеется аналогичный фермент — легоглобин, катализирующий перенос кислорода. Для активного функционирования этих ферментов необходим витамин В12 (В.Л. Кретович, В.А. Яковлев и др.).Важный научный материал был получен также в результате исследований таких почвенно-микробиологических процессов, как денитрификация, нитрификация, окисление серы, разложение различных органических соединений и многих других процессов, представляющих собой различные формы получения энергии в мире микроорганизмов.
Для развития общей микробиологии в последние десятилетия характерна все более углубляющаяся дифференциация, приводящая к выделению новых самостоятельных направлений. Наряду с продолжающимся развитием экологического направления, связанного с изучением разнообразия мира микробов, принципов и методов их систематики, изучением морфологических, цитологических и цитохимических особенностей микробной клетки шло развитие физиологии микроорганизмов. Оно касалось не только изучения уже названных физиологических свойств микроорганизмов на клеточном, субклеточном и молекулярном уровнях, но и способности отдельных групп микроорганизмов синтезировать биологически активные вещества, белки и аминокислоты, а также подвергать молекулярной трансформации сложные органические соединения.
Следует отметить, что увлечение исследованиями биохимии микробиологических процессов привело к некоторому стиранию граней между биохимией, физиологией и общей микробиологией, к утрате последней ее научной специфики и конкретности в определении научных задач. Оно сопровождалось также некоторым отвлечением внимания ученых от выяснения специфики микроорганизмов как живых биологических объектов. Сложившаяся в общей микробиологии ситуация явилась предметом детального обсуждения на XI Международном микробиологическом конгрессе в Мексике (1970).
С начала второй половины XX в. изучение синтетической и трансформирующей деятельности микроорганизмов ведется в тесном контакте с их селекцией и широким практическим использованием.
Главными продуктами биосинтетической активности микроорганизмов являются белки, витамины, гиббереллины, полисахариды, аминокислоты, ферменты, энтомопатогенные препараты, кормовые антибиотики. Непременным условием успешного развития этого направления стало ведение селекционной работы — получение и использование высокоактивных штаммов продуцентов, обеспечивающих рентабельность производства. Развитие селекции опирается на теоретический фундамент генетики. За сравнительно короткий срок (примерно 20 лет) при помощи селекционно-генетических методов были созданы многие высокоактивные штаммы микробов, продуктивность которых была повышена в 10-200 раз по сравнению с исходными штаммами. Их использование явилось предпосылкой создания ряда отраслей микробиологической промышленности. Классическим объектом селекции стали актиномицеты и грибы.