Аспарагиновая кислота, играющая исключительно важную роль в процессах обмена, довольно часто, хотя и в небольших количествах, обнаруживается в культуральной жидкости многих микроорганизмов. Для аспарагиновой кислоты, так же как и для глутаминовой, валина и аланина, характерен синтез путем использования предшественников кетоаналогов и их последующего перевода в аминокислоты ферментными системами клеток. В Японии налажено промышленное производство аспарагиновой кислоты микробиологическим методом на основе превращения фумарата в аспарат
Наиболее рациональным способом промышленного биосинтеза лизина оказалось использование мутантов с наследственными нарушениями в цепи превращений аспарагиновой кислоты — исходного продукта для биосинтеза многих аминокислот — лизина, метионина, треонина, изолейцина. В результате сочетания биохимических и генетических методов исследования были получены штаммы, синтезирующие 25–30 мг/мл лизина. Среди биохимических методов производства лизина наиболее широкое применение получил способ исключения из числа возможных его предшественников гомосерина и треонина, а также диаминопимелиновой (ДАП) кислоты — основного предшественника лизина, образующегося путем ее декарбоксилирования. Существенным также оказалось использование мутантов с пониженной требовательностью к аэрации.
Большое внимание уделялось изучению путей микробиологического синтеза кормового белка. В качестве субстрата для выращивания продуцентов — главным образом дрожжей рода Candida — используются углеводороды и гидролизаты растительных отходов. Не менее интенсивно велись поиски возможности использования биосинтетической деятельности микробов для получения препаратов различных ферментов. Основными продуцентами ферментов являются грибы рода Aspergillus, а также некоторые бактерии и актиномицеты.
В небольшом количестве получают амилолитические и протеолитические ферменты и пектиназы. Достаточно хорошо изучены условия биосинтеза таких ферментов, как лактаза, целлюлаза и гемицеллюлаза, фибринолитические ферменты, глюкозооксидаза, нуклеодеполимеразы и др.
Активность ферментов повышают подбором штаммов и условий культивирования, а также методами селекции. Работы в этом направлении широко ведутся в СССР, Японии, США и других странах.
Интенсивное развитие получил также микробиологический синтез органических кислот — лимонной, итаконовой, щавелевой, глюконовой, — наиболее активными продуцентами которых являются аспергиллы; гиббереллинов, основным продуцентом которых служит культура
За последние годы разностороннему изучению и широкому практическому использованию подверглась трансформирующая активность микроорганизмов. Способность некоторых групп микроорганизмов к тонкой трансформации химических соединений, затрагивающей только один-два атома, нашла применение в тех случаях, когда современная химическая технология еще бессильна. Теоретическую основу развития этого важного раздела физиологии микробов составили идеи В.Л. Омелянского, указывавшего на высокую точность и специфичность деятельности микроорганизмов. «Самые разнообразные реакции окисления и восстановления, гидратации и дегидратации, реакции разложения, полимеризации и атомных группировок, — писал Омелянский, — вызываются микроорганизмами с поразительной легкостью, приводя к глубоким изменениям подвергнутого их воздействию субстрата»[65]
.