Изучение механизма и причин евтрофирования проводится в Швейцарии, ФРГ, Швеции, Канаде, США и других странах. Этот вопрос стал наиболее актуальной проблемой лимнологии. Он был основной темой XIX Международного лимнологического конгресса, состоявшегося в 1974 г. в Виннипеге (Канада). Данный вопрос возбуждает большой интерес не только гидробиологов пресных вод. Так, установление факта, что фосфор служит главной причиной евтрофирования Великих озер Северной Америки, сильно затронуло интересы промышленности, производящей фосфорсодержащие детергены (моющие средства), на долю которых приходится большая часть фосфора в городских сточных водах Канады и США. Существовало также мнение, что развитие фитопланктона в озерах лимитируется не фосфором, а углеродом. Возникла острая дискуссия. Вопрос решили специальные широкие исследования, проведенные Институтом пресных вод Канады под руководством Д. Шиндлера. В специально отведенные для экспериментов озера в течение нескольких лет в разных комбинациях вносили соединения фосфора, азота и углерода (глюкоза). В итоге было убедительно показано, что для возникновения цветения воды достаточно устранить недостаток фосфора и что необходимое для фотосинтеза количество углекислого газа поступает из атмосферы.
В последние годы накапливается все больше примеров «лечения» озер. Наибольшей известностью пользуется в этом отношении детально изученное У.Т. Эдмонсоном оз. Вашингтон (США). Благодаря относительно высокой проточности этого озера отведение от него стоков г. Сиэтла привело к устранению неблагоприятных последствий евтрофирования, к снижению биомассы фитопланктона, повышению прозрачности воды и т. д. В Швейцарии евтрофирование озер, например Цюрихского, успешно устраняется благодаря разработанной технологии удаления из очищенных стоков соединений фосфора. Практикуются и другие способы воздействия на биотический круговорот. Так, в ФРГ используются установки для аэрирования глубинных слоев воды водохранилищ без нарушения температурной стратификации воды. В изучении евтрофирования водоемов, требующем привлечения всей суммы знаний и методов современной гидробиологии пресных вод, с большой наглядностью проявляется взаимозависимость явлений, отражаемая общегидробиологическими и общелимнологическими закономерностями, и неразрывная связь познавательной ценности теории и эффективности ее применения в практике.
Успехи, достигнутые гидробиологией за не столь уж большой срок ее существования, выступают особенно рельефно при сравнении состояния изученности биологии моря в начале века и в наше время. Когда Н.М. Книпович организовывал свои первые научно-промысловые экспедиции, в лучшем случае были известны основные особенности морской фауны. Первые количественные исследования бентоса Баренцева моря были проведены только в начале 20-х годов И.И. Месяцевым, Л.А. Зенкевичем, А.А. Шорыгиным и другими участниками рейсов «Персея» — первого советского исследовательского судна Плавучего морского научного института (Плавморнин), созданного в 1921 г. Теперь только в СССР на морях и океанах ведет исследования большой флот специальных судов Института океанологии АН СССР, Всесоюзного, Тихоокеанского и Полярного институтов морского рыбного хозяйства и океанографии (ВНИРО, ТИНРО и ПИНРО), Института биологии южных морей в Севастополе (ИНБЮМ), Института биологии моря Сибирского отделения АН СССР. В результате на протяжении жизни одного поколения пройден путь от первых работ количественными методами до картирования количества бентоса и планктона на всем протяжении Мирового океана и детального выяснения зависимости его развития от гидрологических условий. Стало возможным приступить к определению общих запасов и годовой продукции планктона и бентоса всего земного шара. Соответствующие подсчеты были опубликованы советским гидробиологом В.Г. Богоровым[87]
в 1965 г. и доложены на Втором океанографическом конгрессе в Москве в 1966 г. Согласно приближенным определениям Богорова, суммарная биомасса зоопланктона составляет 21,5 млрд т., а зообентоса — 10 млрд т. при годичной продукции соответственно 53 и 3 млрд т., в то время как на долю рыб, кальмаров и других крупных активно плавающих животных приходится не более 1 млрд т. биомассы и всего 0,2 млрд т. годичной продукции.В современных морских гидробиологических работах широко используются достижения современной техники. Так, скопления и вертикальные миграции планктона обнаруживают и изучают с помощью эхолотов, биолюминесценцию на больших морских глубинах — с помощью высокочувствительных приборов. Широкое применение находят подводное телевидение и фотографирование донных животных на глубине многих километров. Об огромных возможностях современных средств морских исследований свидетельствует хотя бы недавнее сообщение о том, что специальная подводная лодка с помощью механической руки смогла установить на глубине 1850 м. респирометры для измерения скорости биологического потребления кислорода дном (К. Смит, Дж. Тил, 1973).