Параллельно с накоплением биологических знаний идет усложнение математических методов, используемых в биологии, причем оно касается всех способов применения математики. Так, в области биометрии в последнее время все шире используются методы многомерных статистик. При описании эмпирического материала вместо элементарных функций сейчас часто используются дифференциальные или интегральные уравнения и т. д. Наиболее существенное изменение и усложнение применяемого в биологии математического аппарата произошло в области математического моделирования. По существу, основным средством математического моделирования еще в первой трети XX в. были дифференциальные и интегральные уравнения и теория вероятностей. В последние десятилетия в математике возник ряд новых направлений, связанных с изучением систем высокой степени сложности (теория автоматов, теория игр, динамическое программирование и т. д.). Можно указать на попытки использования в биологии матричных методов, теории групп, топологических методов и других средств современной математики.
В связи с усложнением математических средств, используемых в биологии, все более широкое применение находят вычислительные машины. Быстрота операций, совершаемых машинами, позволяет обрабатывать большое количество данных и открывает новые возможности для биологического эксперимента. При этом обработка данных может выполняться непосредственно в ходе опыта, так что исследователь получает необходимые результаты тогда, когда еще можно изменить направление эксперимента. Более того, вычислительная машина может сама по заданной программе вести эксперимент, меняя его ход в зависимости от получаемых результатов. Некоторые эксперименты, связанные с исследованиями быстро протекающих процессов, вообще принципиально невыполнимы без использования быстродействующих технических средств.
Еще большее значение имеют вычислительные машины для создания в биологии математических моделей. Биологические системы часто описываются нелинейными уравнениями, системами из большого числа дифференциальных уравнений или сложными логическими схемами, так что после формулировки основных положений анализ модели без использования вычислительной техники оказывается столь трудоемким, что она становится непродуктивной. Таким образом, наряду с появлением новых математических направлений принципиальную роль в математизации биологии стала играть и вычислительная техника.
При рассмотрении разнообразных биологических вопросов, относящихся прежде всего к биофизике, биохимии и молекулярной биологии, возникают математические задачи, часто совпадающие с задачами теоретической физики или химии, либо весьма близкие к ним. Естественно, что модели, используемые при решении задач такого рода, наиболее строги и бесспорны, поскольку и основные понятия, необходимые при построении таких моделей, и соответствующий математический аппарат обычно достаточно хорошо апробированы на аналогичных физических задачах.
Одной из первых, в которой была построена математическая модель биологического явления, можно, считать упоминавшуюся выше работу Л. Эйлера (1730). В этой работе сердце рассматривается как насос, а кровеносная система — как система упругих трубок. В дальнейшем в работах по гемодинамике было дано объяснение многих явлений (например, пульсовой волны), хотя вследствие больших математических трудностей ряд вопросов функционирования системы кровообращения до сих пор не описан математически. Принципы механики были использованы в трудах О. Фишера (1895) по кинематике суставов, в работах по применению учения о сопротивлении материалов для объяснения структуры костной ткани, по изучению движений животных в различных средах, а также в исследованиях по физиологической акустике. Важные работы по математической биофизике были выполнены группой Н. Рашевского, которая работает в Чикагском университете (США) с 1934 г.
В пробуждении интереса к проблемам молекулярной биологии заметную роль сыграла книга Э. Шредингера (Нобелевская премия, 1933) «Что такое жизнь с точки зрения физики?» (1945). Значительная часть математических работ в области молекулярной биологии базируется на статической физике и термодинамике. Так, в книге Ф. Джонсона, Г. Эйринга и М. Полиссара «Кинетические основы молекулярной биологии» (1954) с этой точки зрения рассматривается перенос веществ через биологические мембраны, зависимость биолюминесценции от температуры, процесс мышечного сокращения и т. д. В книге М.В. Волькенштейна «Молекулы и жизнь» (1965) приведен обзор современных работ (в том числе математических моделей матричной редупликации ДНК, мышечного сокращения), основанных на теоретической физике.
В литературе обсуждается необходимость объяснения ряда биологических процессов на основе квантовой механики. Речь идет в первую очередь о процессах фотосинтеза, фотохимических процессах зрения, биолюминесценции и процессах ферментативного катализа.