Читаем История биологии с начала XX века до наших дней полностью

Изучение поведения клеток в организме и в культуре ткани позволило обнаружить в них разнообразные регуляторные процессы, а также влияние внешних факторов на деление и движение клеток, синтез тех или иных продуктов и т. д. Наиболее детально изучен в настоящее время процесс регуляции синтеза ферментов в бактериальных клетках. Полученные результаты позволили Ф. Жакобу и Ж. Моно (1961) предложить модель регуляции, основанную на представлении о положительной и отрицательной обратной связи (см. главу 23). При появлении в клетке некоторых питательных веществ начинается энергичный синтез ферментов, необходимых для их обработки. Этот процесс идет по принципу положительной обратной связи. Напротив, при избытке конечных продуктов некоторых реакций происходит репрессия — подавление синтеза ферментов, необходимых для образования этих продуктов. Жакоб и Моно показали, что регуляция синтеза осуществляется особыми генами-операторами, вырабатывающими специфические белковые вещества, которые играют роль регулирующих сигналов. В ряде случаев показано, что этот процесс дублируется другой параллельной системой регуляции, которая связана не с полным блокированием синтеза ферментов, а с изменением их активности. При этом избыток конечного продукта снижает активность фермента, катализирующего первую реакцию в цепи биосинтеза данного продукта. Известны реакции, в которых, напротив, активность фермента повышается. Наличие двух независимых систем регуляции существенно повышает надежность работы всей системы. Таким образом, эта наиболее обоснованная схема регуляции синтеза ферментов аналогична техническим системам регуляции.


Моделирование самовоспроизведения.

Один из важнейших биологических процессов, идущий самопроизвольно или индуцируемый внешними воздействиями, — процесс клеточного деления. При этом процессе идут многочисленные реакции синтеза, удвоения клеточных структур, совершаются механические перемещения, приводящие к обособлению дочерних клеток. Для описания этого процесса, являющегося одной из наиболее характерных особенностей живых систем, было предложено несколько математических моделей.

Дж. Нейман (1951) впервые изучил два варианта таких моделей. Первая модель была кинематической: она представляла собой автомат, состоящий из элементов, расположенных в пространстве, например, из датчика, который позволяет обнаруживать присутствие других деталей, соединительных частей для скрепления этих деталей и т. д.; при этом такой автомат реально не конструировался, а только рассматривался логически. Предполагалось, что он плавает в резервуаре, в котором находится неограниченный запас деталей (подобно тому, как клетка в культуре ткани окружена питательной средой). Нейман показал, что может быть создана машина с программой, которая будет собирать подобные себе автоматы и копировать для них свою программу.

Вторая модель Неймана проще и носит абстрактный характер. Она представляет собой бесконечную решетку (подобную шахматной, доске), каждый квадрат которой может находиться в некотором числе состояний (в модели Неймана их 29). Состояние любой клетки в данный момент зависит от ее состояния в предыдущий момент и от состояния четырех соседних клеток. На этой решетке при соответствующем начальном состоянии можно получить конфигурации, которые сохраняются, двигаются по решетке и порождают подобные себе. Эти работы были продолжены Э.Ф. Муром (1959), М. Арбибом (1965) и рядом других.

Шведский исследователь Л. Лофгрен (1958), рассматривая автоматы, способные обнаруживать ошибки и заменять испортившиеся детали (самовосстанавливающиеся автоматы), связывает надежность с самовоспроизведением. Такие автоматы можно рассматривать как модели регенерации.

Нейман отмечал, что программа его самовоспроизводящихся автоматов подобна клеточному геному, а построение нового автомата, аналогичного исходному, — процессу дупликации генетического материала. С этой точки зрения, ошибки в программе нового автомата, возникающие при ее переписывании, — аналог генетических мутаций. Нейман показал, что для самовоспроизводящихся автоматов существует некоторый критический размер. Автоматы, имеющие размеры меньше критического, могут порождать только более простые, чем они сами. Автоматы большего размера могут порождать подобные себе или даже более сложные.

Таким образом, при некотором уровне сложности системы возникает предпосылка для дальнейшей самостоятельной эволюции автоматов и их приспособления к среде.


Модели межклеточного взаимодействия и формообразования.

Перейти на страницу:

Все книги серии История биологии с древнейших времен до наших дней

История биологии с древнейших времен до начала XX века
История биологии с древнейших времен до начала XX века

В книге освещены важнейшие события в познании живой природы и формирование современных отраслей биологии до начала XX в. Отобраны факты, имена и события, которые характеризуют магистральные линии развития биологии, раскрывают характер и уровень биологических знаний соответствующих эпох. Подобная книга на русском языке издается впервые. Она рассчитана на широкий круг научных работников, преподавателей, аспирантов и студентов биологических факультетов. Илл. 132. Библ. на 36 стр.Книга подготовлена авторским коллективом в составе:Е.Б. Бабский, Л.Я. Бляхер, П.П. Гайденко, Н.А. Григорян, В.Н. Гутина, М.Т. Ермоленко, К.М. Завадский, А.Ф. Зотов, А.Н. Иванов, И.И. Канаев, К.В. Манойленко, С.Р. Микулинский, Э.Н. Мирзоян, В.И. Назаров, Г.А. Новиков, И.М. Поляков, В.Л. Рабинович, И.Д. Рожанский, Е.М. Сенченкова, П.Н. Скаткин, Б.А. Старостин, Л.В. Чеснова, С.Л. Соболь.В подготовке рукописи к печати принимала участие Е.Б. БаглайПод редакцией С.Р. МикулинскогоРедакционная коллегия:Л.Я. Бляхер, Б.Е. Быховский, С.Р. Микулинский, И.М. Поляков, В.И. Назаров (отв. секретарь).

Коллектив авторов

Учебники и пособия ВУЗов
История биологии с начала XX века до наших дней
История биологии с начала XX века до наших дней

Книга является продолжением одноименного издания, вышедшего в 1972 г., в котором изложение доведено до начала XX в. В настоящей книге показано развитие основных биологических дисциплин в XX в., охарактеризованы их современный уровень и стоящие перед ними проблемы. Большое внимание уделено формированию молекулярных отраслей биологии и их роли в преобразовании всего комплекса биологических наук. Подобная книга на русском языке издается впервые.Предназначается для широкого круга научных работников, преподавателей, аспирантов и студентов биологических факультетов.Табл. 1. Илл. 107. Библ. 31 стр.Книга подготовлена авторским коллективом в составе:Е.Б. Бабский, М.Б. Беркинблит, Л.Я. Бляхер, Б.Е. Быховский, Б.Ф. Ванюшин, Г.Г. Винберг, А.Г. Воронов, М.Г. Гаазе-Рапопорт, О.Г. Газенко, П.А. Генкель, М.И. Гольдин, Н.А. Григорян, В.Н. Гутина, Г.А. Деборин, К.М. Завадский, С.Я. Залкинд, А.Н. Иванов, М.М. Камшилов, С.С. Кривобокова, Л.В. Крушинский, В.Б. Малкин, Э.Н. Мирзоян, В.И. Назаров, А.А. Нейфах, Г.А. Новиков, Я.А. Парнес, Э.Р. Пилле, В.А. Поддубная-Арнольди, Е.М. Сенченкова, В.В. Скрипчинский, В.П. Скулачев, В.Н. Сойфер, Б.А. Старостин, Б.Н. Тарусов, А.Н. Шамин.Редакционная коллегия:И.Е. Амлинский, Л.Я. Бляхер, Б.Е. Быховский, В.Н. Гутина, С.Р. Микулинский, В.И. Назаров (отв. секретарь).Под редакцией Л.Я. Бляхера.

Коллектив авторов

Биология, биофизика, биохимия

Похожие книги

Достаточно ли мы умны, чтобы судить об уме животных?
Достаточно ли мы умны, чтобы судить об уме животных?

В течение большей части прошедшего столетия наука была чрезмерно осторожна и скептична в отношении интеллекта животных. Исследователи поведения животных либо не задумывались об их интеллекте, либо отвергали само это понятие. Большинство обходило эту тему стороной. Но времена меняются. Не проходит и недели, как появляются новые сообщения о сложности познавательных процессов у животных, часто сопровождающиеся видеоматериалами в Интернете в качестве подтверждения.Какие способы коммуникации практикуют животные и есть ли у них подобие речи? Могут ли животные узнавать себя в зеркале? Свойственны ли животным дружба и душевная привязанность? Ведут ли они войны и мирные переговоры? В книге читатели узнают ответы на эти вопросы, а также, например, что крысы могут сожалеть о принятых ими решениях, воро́ны изготавливают инструменты, осьминоги узнают человеческие лица, а специальные нейроны позволяют обезьянам учиться на ошибках друг друга. Ученые открыто говорят о культуре животных, их способности к сопереживанию и дружбе. Запретных тем больше не существует, в том числе и в области разума, который раньше считался исключительной принадлежностью человека.Автор рассказывает об истории этологии, о жестоких спорах с бихевиористами, а главное — об огромной экспериментальной работе и наблюдениях за естественным поведением животных. Анализируя пути становления мыслительных процессов в ходе эволюционной истории различных видов, Франс де Вааль убедительно показывает, что человек в этом ряду — лишь одно из многих мыслящих существ.* * *Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Франс де Вааль

Биология, биофизика, биохимия / Педагогика / Образование и наука