Формулируется это так: «Э.д.с., действующая на элемент проводника, измеряется производной по времени от электротонической интенсивности».
Бели мы исключим вспомогательную величину A, объединяя соотношения (2) и (3), то получим одно из уравнений Максвелла:
которое, собственно, и является математической записью закона индукции Фарадея. Интересно, что в данной работе закон индукции не появляется непосредственно в форме уравнения (В). Максвелл ограничивается лишь соотношениями (2) и (3).
Формула (2) фактически содержит в себе третье уравнение Максвелла (первыми двумя условимся считать соотношения (А) и (В)):
Оно получается применением операции div к соотношению (2) с учетом того, что div (rot A) = 0. Уравнение (С) выражает установленный Фарадеем факт, что линии магнитного поля замкнуты — поле не имеет источников.
Разумно предположить, что Максвелл сначала установил уравнения (В) и (С) и лишь затем интерпретировал их в терминах электротонического состояния, введя соотношения (2) и (3). Это единственный способ избежать мистики в попытках понять ход его рассуждений. Отсутствие уравнения (В) в его статье не должно смущать. Для Максвелла вообще Характерно, что ни в статьях, ни в научной переписке он не допускает читателя в свою творческую лабораторию. Наверняка он излагает материал совсем не в той последовательности, как он возникает в процессе работы.
Приведенные выше уравнения (A), (B), (С) верны и остались без изменения до нашего времени. Но сейчас мы знаем, что для законченности картины не хватает еще уравнения (точнее, трех, так как все величины векторные), связывающего изменение магнитного поля в пространстве с внешним током. В первой работе Максвелл записывает его так:
и словесно формулирует в виде закона: «Полная магнитная интенсивность вдоль линии, ограничивающей какую-нибудь часть поверхности, служит мерой количества электрического тока, протекающего через эту поверхность». Мы уже имели дело с аналогичным по форме математическим соотношением (см. ф-лу (2) и рис. 5). Уравнение (D’) является дифференциальной записью закона Ампера, который устанавливает характер магнитного поля, создаваемого кольцевым током. (Из (D’) следует, что div j = 0, т.е. уравнение справедливо только для замкнутых токов.)
Итак, Максвелл пишет уравнение (А), исходя из механической аналогии, а уравнения (B), (С), (D’) фактически «из головы» — как способ локальной (для бесконечно малой области пространства) интерпретации ранее известных экспериментальных закономерностей. Позже, в третьей работе, такой путь будет рассматриваться как единственно возможный, но здесь Максвелл считает отсутствие механической картины серьезным недостатком и не чувствует полного удовлетворения достигнутым. Он пишет: «До сих пор мне еще не удалось разработать идею об электротоническом состоянии настолько, чтобы можно было ясно представить его природу и свойства, не прибегая к символам».
Через пять лет он преодолел свои методические затруднения, а вместе с ними трудности включения в схему незамкнутых электрических токов, и написал вторую статью, которая уже целиком основана на модели, использующей «свойства упругих тел и движений вязких жидкостей», — статью, которую современный читатель воспринимает как механического монстра, статью, которую почти невозможно понять. Но именно она содержит «Уравнения Максвелла» в их окончат тельной форме, в ней впервые свет отождествлен с электромагнитными колебаниями, в ней из электромагнитной теории «выжато» все, что было возможно в то время. (Дальнейшее развитие в принципиальном плане будет связано с открытием электрона, пониманием природы электромагнитного тока, выводом уравнении Максвелла в сплошных средах непосредственно из уравнений для зарядов и полей в пустоте, с созданием теории относительности. Но само это развитие будет основано на уравнениях Максвелла и не отменит их в своей области применимости.)
В течение многих лет среди людей, изучающих историю физики, идет дискуссия о том, как Максвелл «догадался» исправить уравнение (D'). Сам факт такой дискуссии уже говорит о том, что он вовсе не вывел правильное уравнение из механической модели, а в нужном месте «подогнал» модель под желаемый результат. Имеет смысл подробнее остановиться на этом моменте, чтобы увидеть, как делается большая наука. Не будем расстраиваться, не обнаружив здесь ни ожидаемой монументальности, ни чистоты. Вспомним Анну Ахматову:
Когда б вы знали, из какого сора
Растут стихи, не ведая стыда...
Хочется поместить эти строки эпиграфом к нашему рассказу о второй работе Максвелла.