В 1923 г. А.Н. Ларионовым была предложена трехфазная мостовая выпрямительная схема, которая стала самой популярной в эпоху полупроводниковых силовых преобразователей [11.24]. С ростом мощности агрегатов стали актуальными вопросы влияния преобразователей на питающую сеть. В дополнение к известному показателю энергетической эффективности — углу сдвига добавились такие, как коэффициент искажений формы потребляемого тока и фазовая асимметрия. Работа управляемого выпрямителя сопровождается ухудшением косинуса угла сдвига и коэффициента искажений. Влияние этих факторов могло быть улучшено лишь на основе анализа энергообмена между питающей сетью, нагрузкой и всеми реактивными элементами, входящими в преобразовательную систему. Вопросы такого энергообмена в нашей стране были изучены О.А. Маевским, Ф.И. Бутаевым, Е.Л. Эттингером. Были предложены схемы, в которых с целью повышения коэффициента мощности сочетались фазовые методы регулирования напряжения (изменением угла регулирования) с методами переключения питающего напряжения, применения нулевых вентилей и использованием так называемого несимметричного управления.
Дальнейшее развитие преобразовательной техники показало перспективность и актуальность этих исследований. В послевоенные годы доля преобразовательной нагрузки в энергетическом балансе и ее влияние на работу энергосистемы возросли. Более жесткие требования национальных стандартов на качество энергии стало возможно выполнять лишь на основе схем с принудительной коммутацией и на основе схем с двухоперационными силовыми ключами. Помимо преобразователей, ведомых сетью, возросла роль автономных преобразователей. Среди них следует выделить две группы: автономные преобразователи для индукционного нагрева и трехфазные автономные инверторы для электропривода.
Инверторы с повышенной частотой (сотни — тысячи герц) использовались в качестве источников питания для мощных (сотни киловатт) установок индукционного нагрева либо в качестве промежуточного звена для преобразователей постоянного напряжения. Они выполнялись по схемам с параллельной, последовательной или комбинированной конденсаторной коммутацией. Принципиальной особенностью этих инверторов является необходимый для преобразователей на однооперационных вентилях опережающий характер тока. Первым подобную схему предложил в 1938 г. немецкий ученый В. Остендорф (W. Ostendorf), в последующие годы автономные инверторы на повышенные частоты в нашей стране исследовались И.Л. Кагановым, А.Е. Слухоцким, А.С. Васильевым.
Инверторы для электропривода интенсивно разрабатывались в 50-е годы. В эти годы в электроприводе стали очевидны как достоинства асинхронных двигателей, так и их принципиальное ограничение — необходимость изменения частоты питающей сети для регулирования скорости. В связи с этим большие надежды возлагались на трехфазные автономные инверторы с регулируемыми частотой и напряжением. Для асинхронного привода с глубоким регулированием характерно требование хорошего гармонического состава выходного напряжения. Принципы формирования трехфазного синусоидального напряжения методами широтно-импульсной модуляции потребовали разработки новых классов преобразователей, основанных на принудительной коммутации однооперационных вентилей.
Важным качественным усовершенствованием ртутного выпрямителя стало появление управляющей сетки. Первоначальная (диодная) функция ртутных вентилей с повышением рабочих напряжений потребовала введения экранов, защищающих анод от интенсивной бомбардировки потоками ионов.
Развитие конструкции экрана и независимое управление его потенциалом позволило изменять момент возникновения дугового разряда на анод. Ртутный вентиль становится прибором с управляемым моментом отпирания. Первые публикации об исследованиях ртутных вентилей с сеточным управлением относятся к 1933–1935 гг. (М.М. Четверикова, Н.Н. Петухов, М.А. Асташев) [11.9, 11.10]. Они привлекли внимание к возможности регулирования напряжения и защиты агрегата в аварийных режимах. В 1935 г. появились первые работы по исследованию инверторного режима ионного преобразователя частоты (так стали называть управляемый преобразователь электрической энергии на основе дугового разряда в управляемом вентиле). Эти исследования связаны с именем И.Л. Каганова.