Мы видим, что эти аксиомы отчетливо распадаются на две группы. К первой группе относятся первая, вторая, третья и шестая аксиомы, лежащие в основе теории рычага. В аксиомах четвертой, пятой и седьмой говорится о центрах тяжести плоских фигур, причем само понятие центра тяжести считается хорошо известным. Связь между обеими группами аксиом становится очевидной в ходе последующих доказательств, причем эти доказательства имеют крайне формальный характер: место физического рычага занимают простые геометрические линии, и само равновесие становится каким-то неопределенным, отвлеченно-математическим; теоремы доказываются большей частью от противного, причем это относится в равной мере как к первой, так и ко второй части трактата. Материал первой книги подготавливает все необходимое для доказательства теорем второй книги, причем между предложениями обеих частей имеется тесная логическая связь.
Таким образом, следует принять тезис о достаточно позднем времени написания трактата «О равновесии плоских фигур». В этом сочинении Архимед решил придать строгую математическую форму результатам, которые были получены им значительно раньше.
Заметим, что Э. Мах, относившийся с недоверием ко всякому применению формально-дедуктивных методов к механике, полагал, что логическая строгость архимедовской теории рычага является мнимой. По его мнению, теоремы шестая и седьмая трактата, гласящие, что как соизмеримые, так и несоизмеримые величины уравновешиваются на длинах, обратно пропорциональных тяжестям, не могут быть выведены из приведенных выше семи аксиом без привлечения опытных данных. Вот что он писал по этому поводу в «Механике».
«Хотя результаты, полученные Архимедом и последующими исследователями, с первого взгляда и кажутся чрезвычайно поразительными, тем не менее у нас возникают при более точном рассмотрении сомнения в правильности их. Из одного допущения равновесия равных грузов на равных расстояниях выводится обратная пропорциональность между грузом и плечом рычага! Как же это возможно?. Раз уже одну голую зависимость равновесия от груза и расстояния вообще невозможно было
Точка зрения Маха вызвала оживленную дискуссию среди историков науки. Мы не имеем возможности останавливаться на этой дискуссии, так как это заняло бы слишком много места; ограничимся ссылкой на И. Н. Веселовского, который утверждал, что доказательства Архимеда оказываются совершенно безупречными, если разобраться в смысле шестой аксиомы, которая на первый взгляд кажется чистой тавтологией (именно так, по-видимому, воспринимал ее Мах). Этот смысл состоит в следующем: «Действие груза, приложенного в данной точке, определяется только его величиной, т. е. совершенно не зависит от его формы или ориентации».
Понимаемая таким образом шестая аксиома позволяет заменить несколько масс одной, помещенной в центре их тяжести; в этом смысле она и употребляется Архимедом при доказательстве теорем шестой и седьмой первой книги (а также теоремы первой второй книги). Доказательство закона рычага приобретает теперь вполне строгую логическую форму[301]
.Так или иначе, трактат Архимеда «О равновесии плоских фигур» считался на протяжении ряда веков образцом математической строгости. Наряду с письмами к Досифею он тщательнейшим образом изучался математиками XVII в., среди которых, помимо перечисленных выше ученых, были такие гиганты, как Галилей и Гюйгенс.
Особое положение в научном наследии Архимеда занимает трактат «О плавающих телах» (Περί των όχουμένων), состоящий из двух книг. Это, по-видимому, одно из последних, если не самое последнее сочинение великого сиракузца. В пользу этого предположения говорит явная незаконченность конца второй книги. Тем не менее этот трактат можно считать едва ли не высшим достижением Архимеда, свидетельствующим о том, что до конца своих дней (прерванных, как известно, злосчастным ударом меча римского воина) Архимед находился в расцвете своих творческих потенций.
Интересна позднейшая история этого трактата. В XIII столетии один из немногих в то время знатоков греческого языка — Вильгельм Мербеке (ум. 1282 г.) выполнил по просьбе Фомы Аквинского перевод ряда сочинений Архимеда (а также других греческих ученых) на латынь. Среди переведенных сочинений был и трактат «О плавающих телах». Вскоре после этого греческая рукопись трактата была каким-то образом утеряна. В течение нескольких столетий трактат оставался известен лишь в переводе Меркебе. И лишь в начале XX в. Хейберг обнаружил около трех четвертей оригинального текста трактата на том самом палимпсесте, на котором был записан и «Эфод».
Первая часть трактата «О плавающих телах» начинается с предположения, которое можно было бы назвать физической аксиомой, если бы оно не заключало в себе целую физическую концепцию: