Двадцатилетняя деятельность Планка в области термодинамики и ясное понимание значения энтропии, которое тогда еще многими оспаривалось, сыграли большую роль в развитии его идей. Ядром проблемы он считал не формулу интенсивности, а однозначно связанное с нею отношение между энергией, частотой и энтропией излучения. Закону распределения -Вина соответствовала одна связь этих величин, закону Рэлея-Джинса - другая. Когда Планк в октябре 1900 г. узнал о новых измерениях Фердинанда Курл-баума (1857-1927) и Генриха Рубенса (1865-1922), подтверждающих закон для длинных волн, он установил на основе обоих видов связи интерполяционную формулу, из которой непосредственно получался названный по его имени закон излучения, содержащий прежде установленные формулы как предельные случаи*). Он доложил об этом в Немецком физическом обществе 19 октября 1900 г. Несмотря на некоторые сомнения, этот закон в последующем все больше и больше эмпирически подтверждался.
Оставалось, правда, главное дело, а именно: проблема надлежащего теоретического обоснования этого полуэмпирически найденного закона. Планк вернулся к обнаруженной Больцмаиом связи между энтропией и вероятностью (гл. 10) и вычислил вероятность числа колебаний линейного осциллятора. При этом он исходил
*) М. Plank, Zur Geschichte der Auffindung des physika-
lischen Wirkungsquantums, Naturwiss. 31, 153 (1943).
из неслыханно новой, только по необходимости им введенной идеи о том, что возможны только дискретные ступени энергии. Отсюда, действительно, получался закон излучения. Этот закон удовлетворял закону смещения Вина, если ступени энергии отличались друг от друга на величину
Закон квантов энергии
В последующие годы были сделаны еще некоторые другие попытки теоретически вывести закон излучения Планка. В 1910 г. П. Дебай, например, применил
времени, а также пропорциональную энергии излучения вероятность поглощения или вынужденного испускания. Для невозбужденных атомов устанавливается только вероятность поглощения. Мысль Швейдлера о вероятности распада при радиоактивности находит здесь свое применение к другим атомным процессам; эта мысль распространилась на всю теорию квантов.
С другой стороны, термодинамика излучения доставила поразительное подтверждение принципа Больцмана. Две пространственно разделенные системы частиц в общем статистически независимы, так что их вероятности умножаются, когда вычисляют вероятности всей системы; этому соответствует, согласно принципу Больцмана, аддитивное сложение их частных энтропии в общую энтропию, которое принадлежит к числу неявных предпосылок классической термодинамики. Если производят такое вычисление у двух когерентных лучей, которые возникают из одного луча при отражении и преломлении, то находят, что общая энтропия их больше, чем энтропия первоначальных лучей. Но в 1906 г. М. Лауэ смог доказать, что этот процесс обратим; можно два когерентных луча опять сложить в один путем соответствующего отражения и преломления. Общая энтропия двух когерентных лучей должна, следовательно, быть равна энтропии первоначальных лучей. Противоречие разрешается, если отказываются от правила аддитивности частных энтропии когерентных лучей. Согласно принципу Больцмана это действительно необходимо, так как колебания обоих когерентных лучей полностью согласуются друг с другом; колебания в этих лучах не являются, следовательно, статистически независимыми. Это единственное исключение из правила аддитивности энтропии было бы без принципа Больцмана совершенно непонятным.
ГЛАВА 14
КВАНТОВАЯ ФИЗИКА