Вторым большим экспериментальным открытием с течение 1913 г. было открытие расщепления спектральных линий водорода под действием электрического поля, обнаруженное Иоганном Штарком. Но большее значение, чем оба эти открытия, имело теоретическое открытие Нильсом Бором атомной модели, которая
представляет собой изменение модели Резерфорда путем введения квантовых условий. В то время как модель Резерфорда допускала для движения электрона вокруг атомного ядра непрерывный ряд траекторий, эти квантовые условия отобрали из них дискретный ряд круговых траекторий. Согласно обобщению А. Зоммер-фельда (1916) допустимы также эллипсы. Квантовые условия гласили: фазовые интегралы для каждого дозволенного пути являются целыми кратными кванта действия
Напротив, при поглощении одного кванта энергии
Первую победу эта теория одержала после объяснения Бором спектра водорода. В 1885 г. Иоганн Якоб Бальмер (1825-1898) указал на пропорциональность частотлиний, лежащих в видимой области, выражению
1/22-1/m2 причем
чисел 3, 4, 5, 6 и т. д. Теперь Бор нашел для своих круговых орбит (а Зоммерфельд также для допущенных им эллипсов) дискретные уровни энергии, пропорциональные 1/m2 коэффициент пропорциональности -
универсальная постоянная. Следовательно, частоты, соответствующие переходам от одного из этих уровней к
другому, согласно соотношению (I) точно уДовлетво-* ряют формуле Бальмера. Коэффициент пропорциональности - константа Ридберга - получается в соответствии с очень точными измерениями Ф. Пашена (гл. 4). При этом оказалось, что первоначальная теория Зом-мерфельда имеет то преимущество, что она для любого уровня энергии невозбужденного атома допускает несколько орбит. При возбуждении атома электрическим или магнитным полем различные орбиты первоначально единого уровня получают немного отличающиеся между собой значения энергии; уровень «расщепляется», и этому соответствует расщепление спектральных линий согласно приведенной формуле (1). Так стала возможной теория эффекта Штарка, которую дали еще в 1916 г. Карл Шварцшильд (1873-1916) и П. С. Эпштейн. В том же году Дебай и Зоммерфельд разработали теорию нормального эффекта Зеемана.
Если атомное ядро окружено более чем одним электроном, как это имеет место у всех элементов, за исключением водорода, ионизованного гелия и других многократно ионизованных атомов, то вычисление квантовых траекторий и уровней энергии удается только с приближением. Но и тогда атомная модель Бора дает общую систематику линейчатых спектров, включая спектры, лежащие в области рентгеновских лучей. Благодаря квантовым условиям становится возможной также систематика полосатых спектров, испускаемых многоатомными молекулами. Экспериментальные факты, накопленные спектроскопистами в течение десятилетий, сделали возможным глубокое объяснение свойств электронных оболочек атомов в свете теории квантов.
Под руководством В. Косселя (1916) был открыт путь для понимания казавшейся ранее таинственной периодической системы химических элементов. В 1913 г. рентгеноскопия окончательно установила, что эта система представляет собой классификацию элементов соответственно возрастанию зарядов ядер. Но как объ-
яснить приблизительную периодичность химических свойств и спектральных линий? Этот вопрос совершенно висел в воздухе до 1925 г., когда С. Гоудсмит и Г. Е. Уленбек приписали на основе спектральных данных электрону магнитный момент и момент вращения, «спин», - две величины, тесно связанные с константой Планка. В том же году В. Паули установил «принцип исключения», утверждающий, что в электронной оболочке атома не существует двух электронов, которые имели бы одинаковые значения всех квантовых чисел. Исследование, шаг за шагом контролируемое спектральным наблюдением, показало, почему первые периоды системы содержат по 8 элементов, следующие по 16, затем по 32, почему, далее, каждый период начинается со щелочного металла и заканчивается благородным газом. Еще раз, таким образом, два совершенно различных круга идей - старый из химии и новый из квантовой теории - неожиданно встретились и естественно объединились.