Существенно иное истолкование получает проблема неделимых в эпоху Возрождения, в частности у Галилея. Здесь в известном смысле теряет свое значение характерное для античной науки различие математических и физических неделимых, "точек" и "линий", с одной стороны, и неделимых тел, "атомов", - с другой. Но это происходит благодаря радикальному изменению исходных методологических принципов естествознания, пересмотру тех понятий, которые были унаследованы от античной науки. Поэтому то, что было сделано в эпоху Галилея, нельзя проецировать на греческую науку, что, по-видимому, сделал С.Я. Лурье в своей работе "Теория бесконечно малых у древних атомистов" (М.; Л., 1935).
Наука и философия нового времени стро·т совершенно новую модель связи математики с физикой, и в свете этой новой модели античные программы, оттесненные на задний план в средневековой науке, неожиданно приобретают совершенно новое звучание: мы имеем в виду математическую программу пифагорейцев и платоников, а также физическую программу Демокрита.
Чтобы избежать модернизации античной науки, в том числе и учения Демокрита, необходимо, по-видимому, рассматривать его в условиях теоретической ситуации того времени - как мыслителя, решающего вопросы, поставленные его предшественниками и современниками, а не нами и не нашей современной теоретической ситуацией. То же самое имеет силу и по отношению к другим теоретическим позициям и научным школам.
Если не упускать из поля зрения, что ответ Демокрита был решением задач, условия которых формулировались прежде всего двумя предшествующими философскими направлениями - пифагорейцами и элеатами, то атомистическая теория предстанет в исторической перспективе как физическая интерпретация пифагорейского учения о "единицах", неделимых "монадах". В пользу этого предположения говорит и свидетельство о том, что Демокрит, помимо того, что он был учеником Левкиппа (а сам Левкипп - учеником Зенона)62, учился также у кого-то из пифагорейцев63. Мы не можем поэтому согласиться с утверждением Э. Франка, что пифагорейский тезис "все есть число" (а соответственно и пифагорейское понятие неделимой "монады") представляет собой заимствование у Демокрита. "...Легко видеть, - пишет Франк, что такие положения, как "все есть число" или "единственно объективное познание есть математика", непосредственно вытекают из воззрения атомизма, и только из него могут быть поняты. Ибо если все есть атом или совокупность атомов, тогда, конечно, все есть только число"64. При этом Франк ссылается на Аристотеля.
Рассмотрим свидетельства Аристотеля, которые приводит Франк. Вот одно из них: "Может показаться, что все равно, говорить ли о единицах или маленьких тельцах (как элементах души). В самом деле, если бы шарики Демокрита превратились в точки, при сохранении (их) количества, то в этом (множестве) будет иметься и движущее и подвижное, как в непрерывном"65.
Говорит ли Аристотель о том, что шарики Демокрита превратились у пифагорейцев в точки, т.е. что в ходе развития концепции Демокрита пифагорейцы дали ей такое - математическое - истолкование? Ничего подобного он не говорит. В этом разделе, как и во многих других своих работах, он сравнивает атомизм Демокрита с учением о "неделимых монадах" - числах пифагорейцев, поскольку оба эти учения исходят из общей посылки - множества неделимых элементов, только Демокрит понимает их как физические "шарики", а пифагорейцы - как математические числа. Контекст высказывания Аристотеля такой: он критикует здесь учение пифагорейцев, что "душа есть самодвижущее число", и показывает, что ни понятия пифагорейцев, ни понятия атомистов не пригодны для объяснения природы души. Таким образом, извлечь из этого отрывка мысль о том, что исторически понятие числа возникло из понятия атома, на наш взгляд, невозможно66.
Аристотель вообще очень часто сравнивает атомистов с пифагорейцами, ибо, действительно, и те и другие признавали неделимые элементы и пустоту, их разграничивающую; но никогда он не забывает указать также и на различие обеих школ67. Неделимые элементы, кроме пифагорейцев и атомистов, признавал, согласно Аристотелю, и Платон; поэтому иногда Аристотель в связи с обсуждением теории неделимых говорит о всех ее разновидностях, включая сюда и платоновскую; но всегда указывает при этом на отличительные особенности каждой разновидности. Вот один из примеров: "Он (Платон) говорит примерно в том же духе, что и Левкипп, но отличается от него лишь в том, что неделимыми элементами у Левкиппа являются тела, у Платона плоскости; при этом Левкипп утверждает, что каждое из его неделимых тел характеризуется особой формой, причем число этих форм бесконечно, а по Платону, число их ограничено. Однако же оба утверждают, что элементы неделимы и характеризуются формой" (ЛД. СвV, 222).