Точка зрения Франка логически связана с его тезисом о том, что раннее пифагорейство не имело реального отношения к науке и что существование научной школы пифагореизма можно отнести только ко времени Архита, т.е. к IV в. до н.э. При такой постановке вопроса атомизм Левкиппа-Демокрита действительно оказывается исторически первой формой учения о множестве неделимых элементов, к какому выводу и приходит Франк, несмотря на то что в свидетельствах античных авторов этот вывод ничем не подкрепляется. Точку зрения Э. Франка в этом вопросе разделяет и С.Я. Лурье. "Франк, - пишет он, - видящий в пифагорейских монадах лишь идеалистическое видоизменение демокритовых атомов, в том же смысле понимает и свидетельство Аристотеля в "Метафизике", в чем он совершенно прав (Aristot. Metaph. II, 5. P. 1002 a8)"68.
Рассмотрим указанное свидетельство Аристотеля. "Поэтому большинство мыслителей и мыслители более ранние со своей стороны признавали сущностью и сущим тело, а все остальное <считали> за его состояния, вследствие чего и начала, <которые они устанавливали для> тел, они принимали за начала всех вещей. Между тем мыслители более поздние и признанные более мудрыми, чем первые, <считали сущностями> числа"69. И Франк, и Лурье считают, что в приведенном отрывке Аристотель под более ранними подразумевает атомистов, а под более поздними - пифагорейцев и тем самым указывает на хронологическую последовательность появления этих учений. Между тем ничто в этом разделе не подтверждает такой трактовки70.
Напротив, имеется ряд свидетельств древних авторов о том, что пифагорейский принцип "все есть число" был сформулирован еще Пифагором, но эти свидетельства противоречат концепции Э. Франка, и потому он ими пренебрегает.
Существует, однако, весьма серьезная методологическая проблема, которую мы здесь не можем обойти молчанием. Связана она с тем, что практическая работа ученого - математика, физика, биолога - подчас может быть весьма плодотворной также и без специального уяснения им своих методологических предпосылок и фундаментальных понятий.
По этому поводу интересно привести замечание П. Дюгема. "Даже самый знающий геометр, - пишет он, - не мог бы определить пространство; но люди, хотя бы немного изучавшие геометрию, могут между собой говорить о пространстве без всякого опасения, вовсе не сговариваясь; они знают все, что можно утверждать о пространстве, а что - отрицать... они все согласны, что между двумя любыми точками можно провести прямую линию..."71 Геометры знают также, продолжает Дюгем, что такое время; они рассуждают, не пытаясь определить, ни что такое пространство, ни что такое время и движение, и при этом прекрасно понимают друг друга72.
То, о чем говорит Дюгем, как раз составляло характерную черту раннепифагорейской математики. Пифагорейцы не уточняли понятий пространства, времени, они даже не ставили вопроса о том, рассуждают ли они о физическом теле или математической фигуре, когда говорили, что "вещи состоят из чисел", и при этом, как верно отмечает Дюгем, они вполне понимали друг друга и вполне правильно решали задачи и делали математические открытия. Более того, и позднейшие математики (в том числе и из пифагорейцев) продолжали "работать" без предварительного определения исходных понятий (пространства, времени, движения), хотя время от времени возникающие противоречия привлекали их внимание к вопросам, связанным с онтологическим статусом математических понятий и операций.