Единица неделима, ибо она есть единое, а единое неделимо по определению. Единица, согласно концепции Платона, рождает множество, но и само множество имеет своим логическим условием единицу: ведь если нет единого, то нет и многого, поскольку многое - это множество единиц. Единицу нельзя разделить на том самом основании, которое Платон с предельной четкостью сформулировал в заключительных словах к диалогу "Парменид": "Если единое не существует, то ничего не существует".
Что же, однако, такое "математические вещи", или "математические объекты", о которых говорит Аристотель, и чем они отличаются у Платона от чисел? Вот что говорит об этом Платон: "Когда они (геометры. - П.Г.) пользуются чертежами и делают отсюда выводы, их мысль обращена не на чертеж, а на те фигуры, подобием которых он служит. Выводы свои они делают только для четырехугольника самого по себе и его диагонали, а не для той диагонали, которую они начертили. То же самое относится к произведениям ваяния и живописи, от них может падать тень и возможны их отражения в воде, но сами они служат лишь образным выражением того, что можно видеть лишь мысленным взором" (курсив мой. - П.Г.).
Рассматривая эти соображения Платона в своей истории античной математики, Б.Л. ван дер Варден полагает, что античные математики должны были быть согласны здесь с Платоном. "И действительно, - пишет Варден, - для прямолинейных отрезков, которые можно видеть и эмпирически измерять, является бессмысленным вопрос, имеют ли они общую меру или нет: ширина волоса уложится целое число раз в любом начерченном отрезке. Вопрос о соизмеримости имеет смысл только для отрезков, создаваемых мыслью".
Платон, таким образом, различает геометрические фигуры, как они представлены на чертеже, и "фигуры сами по себе", т.е. такие, которые "можно видеть лишь мысленным взором". Видимо, последние как раз и есть те "математические вещи", которые, по свидетельству Аристотеля, Платон отличает от чисел и которые он считает промежуточными, помещая их между миром идеального и чувственным миром.
"Математические объекты", стало быть, - это те образования, которыми оперирует не арифметика, имеющая дело с числами, а геометрия, это фигуры: окружности, треугольники, четырехугольники - и их элементы: радиусы, углы, диагонали, биссектрисы и т.д., т.е. линии и плоскости, по-разному сконструированные. К математическим Платон относит и "объекты" стереометрии: шар, куб, тетраэдр, икосаэдр и др. Все это, согласно Платону, объекты мысли, но они в то же время могут иметь чувственные подобия, чувственные аналоги: в качестве таких подобий могут выступать не только начерченные на песке или на восковой дощечке круги, треугольники и т.д., но и вырезанные из дерева или из камня шары, кубы, пирамиды. Видимо, в этом смысле Аристотель и говорит, что Платон считает числами и вещи, и причины вещей, но причинами он считает числа умопостигаемые, а те, что воплощаются в вещах, считает производными от первых. Точно так же и с геометрическими объектами: те вещи, которые имеют форму шара или куба, Платон считает чувственными подобиями идеального шара или куба, так же как чувственными подобиями геометрических фигур являются их чертежи.
Понятие пространства у Платона и онтологический статус геометрических объектов
Но почему же числа и геометрические объекты оказываются у Платона имеющими разный статус: числа - чисто идеальные сущности, а линии, углы, фигуры сущности "промежуточные"? В соответствии с этим различением арифметика выступает у Платона и Аристотеля как первая в ряду математических наук и наиболее среди них "простая", а тем самым и более достоверная, чем геометрия. В чем коренится такое различие между арифметикой как наукой о числах и геометрией как наукой о "фигурах"? Оно коренится в том, что числа и числовые отношения геометрия представляет в виде определенных пространственных образов, схем, т.е. фигур.
Пифагорейцы по той причине, видимо, не различали числа и вещи, что они считали единицу, имеющую определенное положение в пространстве (т.е. точку), вещью; поскольку эмпирический мир вещей - это мир пространственный, то единица, становясь точкой, тем самым выступает как элемент пространственного, а значит, эмпирического мира.
Показывая, что геометрические конструкции по своему статусу отличаются от вещей чувственного мира, Платон в то же время не может отождествить их с собственно идеальными объектами, каковы числа. Пытаясь найти онтологический статус геометрических объектов, он приходит к мысли о том, что пространство - стихия геометрии - есть нечто среднее между идеями и чувственным миром.