Два последних признака(— однородность и изотропность. Под однородностью пространства) разумеется одинаковость качества, какие бы вырезки из пространства мы ни взяли. Все равно, вырезать ли из евклидовского пространства на Луне или на Земле, мы мыслим его абсолютно тождественным по качеству. Под изотропностью разумеется одинаковость качеств пространства по всем направлениям. Эти лучи по вертикали и горизонтали, они будут тождественны по своим качествам. Они отличаются между собою условно и соотносительно — если я одну считаю горизонталью, то другую я называю вертикалью, а хотите, и наоборот. То и другое свойство вовсе не присуще пространству вообще, т. е. нет оснований ждать, чтобы оно было присуще пространству художественного произведения.
Но относительно того, что оно не присуще и вообще пространству действительного восприятия, вы можете судить и по тому, что для нас горизонтальная и вертикальная плоскость вовсе не одно и то же, для нас не все равно, положить картину так или так, качества картины от этого меняются. Пространство художественного произведения, как и пространство восприятия, не изотропно, лучи по разным направлениям обладают разными свойствами. Есть некоторое абсолютное направление в пространстве, которое мы не смешаем с другими. Нам не все равно, идет ли луч справа налево или наоборот. Возьмите любой приличный рисунок и посмотрите на свет. С другой стороны, направление вперед и назад и направление горизонтали справа налево и слева направо вовсе не тождественны. Для них существует особая мера, масштаб, и особая чувственная окраска.
Теперь у нас есть вопрос об однородности. Конечно, в нашем непосредственном восприятии не все равно, взять ли вырезку пространства около меня или за сто верст от меня, взять ли кусок пространства здесь или в конце комнаты. Здесь он доступен моему непосредственному опыту, осязательному, а там — только зрительному. Зрение будет действовать иначе тут, чем там.
В художественном произведении вы увидите, что каждый квадратный сантиметр, взятый в том или другом месте, имеет особый масштаб, качественность и особые законы. Он далеко не тождественен с другим квадратным сантиметром. Тут пространство художественного произведения не однородно, как и не изотропно.
По всем признакам, характерным для евклидовского пространства, художественное пространство отличается от этого пространства. Прямой перенос евклидовского пространства на художественное произведение есть только недоразумение.
(8–я ЛЕКЦИЯ[224]
)(Дата в рукописи не указана)
Строение пространства характеризуется его кривизною. Мне очень совестно, что я надоедаю математическими понятиями, но я не вижу иного пути, чтобы подойти к проблемам эстетическим. То, что выработано современной математикой, может быть вполне перенесено в область эстетики, но, к сожалению, я не могу ссылаться на ее собственные понятия. Понятие кривизны позволяет еще досадить вам математикой.
Прежде всего, кривизна по отношению к одномерному пространству, т. е.(к) линии. Но тут это представляется вполне ясным. Если мы к какой‑нибудь точке этой кривой проведем касательную, то мы видим, что эта прямая отступает от касательной и она искривляется. Мерою искривления служит быстрота (удаления от) этой касательной. Для того чтобы измерить кривизну, нужно взять за единицу какую‑то постоянную кривизну, кривизну такой кривой, которая во всех точках одна и та же. Если я знаю радиус касательной (окружности), то он характеризует меру кривизны[225]
.Если мы перейдем к пространству двух измерений, к поверхности, то тут понятие кривизны будет сложнее. По аналогии естественно было бы желать к этой кривой поверхности прикоснуться в искомой точке, некоторой сфере, которая бы и характеризовала эту кривизну. Но, вообще говоря, этого нельзя сделать. Кривая линия изгибается только в одном смысле, поверхность может изгибаться в двух смыслах. Она может быть изогнута только по направлению противоположному или еще изогнуться или не изгибаться. Если взять лист бумаги, вы его можете изогнуть. Следовательно, нельзя сказать, что радиус окружности, который соприкасается с соответственным сечением поверхности, будет везде один и тот же, что кривизна по всем направлениям будет одна и та же.
Нужно бы вписывать некоторый эллипсоид или, так как выяснено, что по некоторому определенному направлению кривизна является наибольшей, а по другому — наименьшей, то Гаусс предложил за меру кривизны брать произведение из двух радиусов 1/R1
R2. Это для так называемой гауссовой кривизны поверхности. Она меняется от точки к точке.