Так мы подойдем к весьма крупному понятию, понятию кривизны трехмерного и многомерного пространств. Это понятие есть характеристика удельной емкости пространства. Пространства могут обладать различной емкостью, и она может меняться от точки к точке. В одних местах пространство емко, в других нет. У вас естественно рождается вопрос о косвенном дополнении. Емко по отношению к чему? Мы говорили о воде, но, как мы выяснили раньше, понимание пространства и то и другое охарактеризование его зависит от того явления, от того физического процесса, который мы полагаем в основу измерения. Тут мы сразу переходим к области, нас интересующей непосредственно.
Пространство есть среда, в которой располагаются не только веса и объемы, жидкости и твердые тела, но и разные другие физические характеристики, и температуры, и электрические, магнитные состояния и т. д. Кроме того, тут же в пространстве располагаются все наши переживания и отношения к действительности, т. е. то, о чем мы говорили. Когда шла речь о том, что есть пространство каждого ощущения. Раз мы располагаем известными образами ощущений в соответственном пространстве, значит, мы эти образы полагаем в основу при понимании пространства. Если это были веса или объемы жидкостей, мы должны держаться весов или объемов жидкостей, но если это были, положим, качества известных зрительных представлений, то должны держаться этого метода оценки. Следовательно, емкостью в порядке эстетическом для нас будет способность той или другой точки пространства по–разному относиться к одному и тому же фактору чувственного восприятия.
— Если я говорю, что зрительное поле мое обладает различной чувствительностью в разных местах, т. е. если одна интенсивность света, минимальная, будет видна при прямом зрении, другая — при боковом, то в порядке геометрического обсуждения это значит, что зрительное пространство обладает по отношению к световым впечатлениям различной емкостью, что в то время как данный участок пространства насыщается до видимости световыми впечатлениями при одной интенсивности, другой участок может только при другой интенсивности. Переводя на геометрический язык, мы должны сказать, что другой участок пространства обладает иною емкостью.
Если одно и то же количество штрихов производит на нас разное впечатление в зависимости от того, представлены ли они под тем или иным углом нашего зрения, т. е. что в одном случае их кажется больше, в другом они кажутся шире поставлены. Это значит, что зрительное пространство обладает различной емкостью.
Да, но по отношению к стакану воды пространство во всех местах обладает емкостью одинаковой. Верно. Ведь в том‑то и дело, что мы должны оставаться при том приеме измерения, с которого мы начинаем, и потому и получаются разные пространства.
Пространство этой комнаты для осязания есть нечто совсем иное, чем для зрения. Для зрения бинокулярного—совсем иное, чем
То, что должен сказать художник, который подходит с некоторым определенным приемом к данному помещению, не будет опровергаться тем, что должен сказать физик. Они говорят о разном, подобно тому как и физик должен бы сказать разное в зависимости от того, с каким инструментом он действовал бы. Возможно, что для физических приборов разница представлялась бы незаметной.
Но, принципиально говоря, это зависело бы от того, что комната мала. Пример того, как известный физический фактор может оцениваться или не оцениваться в качестве, если
Я указывал, что точка, пролетающая мимо некоторой тяжелой массы, отклоняется от своего прямого пути, так же отклоняется кусок железа от магнита. Однако, пролетая мимо магнита, не всякая материальная масса отклоняется. Если искривление пути, т. е. некоторое указание, считается признаком наличия силы или наличия силового поля, то с точки зрения куска железа мы про магнит скажем, что тут есть силовое поле, с точки зрения куска меди мы этого не скажем. Геометрия существа железного или живущего на железной сфере признала бы это место чрезвычайно искривленным, а на медной — признала бы его почти что евклидовским.