Читаем История логики. полностью

Леонардо да Винчи — многогранная личность: он велик и как художник, и как ученый, и как инженер-практик. Он известен и как скульптор, архитектор, математик, естествоиспытатель (астроном, анатом, геолог), философ и, наконец, как выдающийся инженер-изобретатель. Он внес усовершенствование в самопрялку и токарный станок, изобрел новые механизмы и физические приборы. Он известен своими изобретениями в гидротехнике и военной технике. Его ум занимала проблема воздухоплавания, и он производил наблюдения над полетом птиц, исходя из положения, что птица представляет собой «инструмент, движущийся по математическим законам». У него возникла идея парашюта, дающего человеку возможность безопасно спускаться с любой высоты.

Для истории теории познания и логики важное значение имеет высказанная Леонардо да Винчи идея о роли математики в познании природы. Ценность математики он усматривает не только 'в строгой достоверности ее положений, но и в том значении, какое имеет точная математическая формулировка законов природы.

Леонардо говорит, что математика со своим строгим научным методом разрушает все произвольные выдумки, разбивает софистические словесные ухищрения. Она раскрывает в вещах необходимость, которая является связью природы. Математика точно выражает закономерность телесных изменений и устраняет все сверхъестественное. Леонардо ведет борьбу против магии, которая еще имела многих приверженцев в ту эпоху.

Леонардо решительно отвергает всякое влияние духовных сил на материю. Ничто бестелесное не может воздействовать на движение материи. Он говорит, что никакое движение не может возникнуть из ничего, и объявляет абсурдом мысль о создании perpetuum mobile. О механике Леонардо говорит, что она является «плодом математики», который своими практическими результатами доказывает высокую ценность применяемого в науке математического метода.

После Леонардо да Винчи идеи математического естествознания развил дальше Иоганн Кеплер.

Теория познания Кеплера исходит из положения, что ощущения дают нам хаотическую массу впечатлений, которые не связаны между собой никакими отношениями, порядок же в них вносится разумом. Единство и порядок, по учению Кеплера, дух носит в себе и переносит их на чувственно воспринимаемые им вещи. Не восприятие, производимое глазом, дает нам познание геометрических фигур, а, наоборот, самую деятельность глаза можно понять только на основе этих геометрических образований; даже если бы не было чувственного глаза, дух сам бы из себя строил постулаты по геометрическим законам, ибо познание количеств врождено душе.

В теории опыта Кеплер исходил из положения, что восприятие пространства, величины предметов и их удаленности от нас не дается нам с самого начала, а приобретается на основе определенной умственной деятельности. Пространственное расчлене-ьие и пространственный порядок Кеплер приписывает деятельности ума, для которого показания ощущений являются лишь исходным моментом. Знание отношений, по Кеплеру, есть дело чистого разума.

Подобно Канту, который утверждал, что в каждой отрасли знания имеется столько подлинной науки, сколько в ней есть математики, Кеплер придает математике универсальное значение в научном познании. По его мнению, природа человеческого разума такова, что он вполне постигает либо величину, либо опосредствованный величиной предмет. Мы понимаем материал лишь после того, как влили его в форму, которая делает его доступным для нашего разума. В этом плане Кеплер придает особое значение математической гипотезе. Она для него не есть простое вспомогательное средство в процессе научного познания. По мнению Кеплера, только математическая гипотеза впервые указывает путь к правильной постановке научной проблемы.

Особо необходимо отметить отношение Кеплера к Копернику. Первый издатель труда Коперника Андреас Осиандер рассматривал учение Коперника не как истину, а как простую гипотезу, значение которой сводится к облегчению математических вычислений в астрономии и ограничивается этим.

Совершенно иначе оценивает учение Коперника Кеплер. Он воспринимает его как новое миропонимание, как переворот во взглядах на Вселенную. Кеплер решительно и страстно выступает против Осиандера, разоблачая совершаемое последним извращение основных положений Коперника. Кеплер доказывает, что теория Коперника имеет своей главной задачей не упростить астрономические вычисления, но изменить наше понимание сил, господствующих во Вселенной. Развивая основную идею системы Коперника, Кеплер учит, что нет той противоположности между земным и небесным мирами, о которой говорили Аристотель и средневековые схоластики, но во всей Вселенной господствуют одни и те же естественные законы.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука