Читаем История математики. От счетных палочек до бессчетных вселенных полностью

<p>13. Математика в движении</p>

Мы уже упоминали, что Ньютон и Кеплер моделировали орбиты планет исключительно геометрически. Однако в космическом пространстве не существует реальных эллипсов, они — лишь невидимые пути, по которым движутся планеты. Поэтому, чтобы больше не строить орбиты геометрически, по точкам, было бы очень полезно найти математический инструмент для описания движения планет. Те, кто пытался перейти от последовательности прямолинейных движений к действительно плавному пути, снова столкнулись с проблемой бесконечности и бесконечно малых величин.

Прежде чем обратиться к изобретению дифференциального и интегрального исчислений, стоит вспомнить более ранние попытки решить общие задачи с площадями и тангенсами. Это «до-дифференциальное и до-интегральное счисление» можно найти уже у Архимеда, разработавшего два метода определения площадей, ограниченных кривыми линиями. Их нередко называли геометрическим и механическим методами. Одна из самых известных задач, доставшихся нам от древних, — вычисление площади круга, так называемой квадратуры круга. В коротком трактате «Об измерении круга» Архимед приводит доказательства двух важных результатов. Во-первых, площадь круга равна площади прямоугольного треугольника, основание которого равно окружности круга, а высота — радиусу круга, что эквивалентно нашей формуле r 2, но без необходимости вводить собственно число . Второй важный результат — доказательство, что числовое значение находится между 3 1/7 и 3 10/71. В обоих случаях использовался геометрический метод: строились описанные и вписанные в круг многоугольники; затем, последовательным удвоением числа сторон каждого многоугольника они постепенно приближались к окружности. Помимо всего прочего, эти два многоугольника постепенно сближаются, в некотором смысле получается бутерброд из многоугольников с окружностью, прослоенной между ними, так что, если процесс продолжить до бесконечности (то, что математики называют «в пределе»), площади многоугольников постепенно сближаются с площадью круга. Чтобы найти значение , Архимед начал с описанного и вписанного шестиугольников и закончил процесс, когда достиг 96-стороннего многоугольника, хотя мог бы продолжать до тех пор, пока бы не достиг любого задуманного уровня точности. Архимед использовал метод последовательных элиминаций, за который мы должны благодарить Евдокса (см. Главу 4), но старался не заявлять, что многоугольники постепенно становятся кругом, приходя к результату посредством длинной логической аргументации. Это умалчивание понятно, поскольку, с точки зрения греков, многоугольник и круг были совершенно разными фигурами.

Механический метод Архимеда иллюстрируется в работе, носящей название «Послание к Эратосфену о методе». Она считалась утерянной, но в 1906 году была обнаружена в Константинополе. Этот труд был палимпсестом, пергаментом десятого века; он содержал различные работы Архимеда, а затем его использовали в качестве молитвенника, но тексты древнего грека соскребли не окончательно, так что их еще можно было разобрать. (В 1998 году «Послание к Эратосфену о методе» было продано с аукциона за два миллиона долларов.) Метод, который обсуждает Архимед, — по существу, разборка площади на линии, преобразование этих линий, а затем восстановление их в виде другой площади. Точное преобразование было выполнено путем использования Архимедова правила рычага. В некотором смысле ученый уравновесил известную площадь с неизвестной. Положение точки опоры определяет относительные размеры площадей — отсюда термин «механический метод». Архимед утверждал, что это очень полезный эвристический инструмент для получения новых результатов, однако он понимал, что его метод ненадежен, и, когда встал вопрос о получении безупречного результата, вернулся к геометрическому методу. Главная проблема в том, что приходится принять: площадь фигуры может быть составлена из неделимых линий, поскольку линия — это длина без ширины, одномерный объект, и, когда мы мысленно соединяем линии, сумма одномерных объектов остается одномерной и не может дать двумерную площадь. Несмотря на это, Архимед сумел правильно вычислить множество площадей и объемов, включая площадь сегмента параболы, а также центры тяжести объемных тел вроде конуса.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже