Читаем История математики. От счетных палочек до бессчетных вселенных полностью

Хотя исчисление Лейбница также выросло из анализа рядов, его вид был в значительной степени иным: он увлекся суммированием бесконечно малых величин. Будучи в Париже, он поставил задачу вычисления суммы обратных величин треугольных чисел (треугольное число — это число кружков, из которых можно составить равносторонний треугольник). Последовательность треугольных чисел  T nдля n= 0, 1, 2… начинается так: 0,1, 3, 6,10,15…, выраженных общей формулой 2/[n(n+1)].Он очень хитроумно переписал это как разницу между двумя членами, то есть 2 [1/n — 1/(n+1)].Просто выписав первые несколько элементов ряда, он увидел, что все члены ряда взаимно уничтожаются за исключением первого и последнего. Увеличивая сумму до бесконечного числа элементов, Лейбниц получил ответ 2. Ученый рассмотрел много других рядов и постепенно научился определять, сходится он или расходится. Тогда он понял, что проблема обнаружения касательной к кривой сводится к вычислению отношения разницы в ординатах и абсциссах (значений хи у), в то время когда они становятся бесконечно малыми величинами, и квадратуры зависят от суммы ординат или бесконечно узких прямоугольников, из которых состоит область, располагающаяся под кривой. В случае с числовыми рядами суммы и разности были инверсиями друг друга. То же самое получалось в задачах о касательной и квадратуре. Все это основывается на характеристиках бесконечно малого треугольника, того самого, который Ньютон описал как «соотношение бесконечно малых величин». Ключевая концепция Лейбница заключалась в том, что дифференциал dx— бесконечно малое изменение значения х. Дляфункции у = f (х)градиент вычисляется как dy/dx,а квадратура — как ydx.Обозначение интеграла может символизировать утверждение, что это сумма прямоугольников со сторонами уи dx.Первые рукописи Лейбница датируются 1675 годом, а после небольшого изменения нотации он издал свои результаты в статьях. Первая вышла в 1684 году, а вторая — в 1686-м, обе напечатали в журнале «Acta eruditorum», соиздателем которого был сам Лейбниц. В них можно найти общеизвестные теоремы дифференциального и интегрального исчислений, включая фундаментальную теорему, что дифференцирование и интегрирование — прямо противоположные процессы. Лейбниц подчеркнул: новое исчисление дает универсальный алгоритм для решения задачи касательной и квадратуры в случае с целым диапазоном функций, включая трансцендентные (термин, придуманный Лейбницем для обозначения функций типа sin хи Inх), которые могут быть выражены как бесконечные степенные ряды, но не представляют собой решения алгебраических уравнений.

Результаты, полученные Лейбницем, аналогичны тем, которые отказался опубликовать Ньютон. Возникший спор о приоритете в изобретении дифференциального и интегрального исчислений омрачил последние годы жизни обоих ученых. Если говорить о датах публикаций, первое издание «Начал» вышло в 1687 году, уже после статей Лейбница в «Acta eruditorum». Ньютон послал экземпляр «Начал» Лейбницу, полагая, что тот находится в Ганновере. Лейбниц, будучи в Италии, прочитал обзор книги в 1689 году в «Acta eruditorum» и, основываясь на этом обзоре, написал статьи по механике и оптике, в которых, конечно, использовались достижения Ньютона. Многие европейцы приписывали ему открытие дифференциального и интегрального исчислений лишь благодаря успеху его предшествующих статей, опубликованных на континенте. В 1699 году в работе малоизвестного математика, представленной Королевскому обществу, упоминалось, что Лейбниц позаимствовал свои идеи у Ньютона. Последовал жесткий ответ. Лейбниц закусил удила. Он использовал «Acta eruditorum», в то время как Ньютон опирался на поддержку Королевского общества, создавшего целый комитет, чтобы тщательно изучить этот вопрос. В 1705 году в «Acta eruditorum» был опубликован неблагоприятный обзор последней публикации Ньютона, а в 1712 году комитет Королевского общества принял решение, что именно Ньютон был первым изобретателем дифференциального и интегрального исчислений. В 1726 году, после смерти Лейбница, Ньютон удалил из третьего издания «Принципов» все ссылки на Лейбница. Если бы Ньютон открыто и полностью опубликовал свои «Принципы» еще в 1669 году, возможно, неприятных баталий можно было бы избежать. Британцы придерживались ньютоновых флюксий и флюентов вплоть до начала XIX столетия, но в других странах Европы дифференциальное и интегральное исчисления развились в невероятно мощный математический аппарат именно на языке Лейбница.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже