Читаем История математики. От счетных палочек до бессчетных вселенных полностью

Постоянно усиливавшаяся потребность в точности измерений на земле, в море и в небесах влекла за собой увеличение объема необходимых вычислений. Добавление новых формул означало удлинение вычислений. В результате начиная с XVII века к облегчению расчетов привело применение логарифмов. У штурманов имелись таблицы тригонометрических функций и логарифмов, позволявшие облегчить вычисления, хотя в таких таблицах было очень много ошибок, закравшихся в процессе печати. Изобретение логарифмической линейки если и не смогло увеличить точность вычислений, то по крайней мере сберегало время, и потому в XVIII веке она получила широкое распространение. К тому времени взгляд на мир сильно отличался от представлений Птолемея — теперь Земля была простой планетой, сплюснутым с полюсов сфероидом, вращавшимся вокруг Солнца по своей орбите. Во второй половине XX века мы наконец оторвались от поверхности Земли и увидели свою планету с высоты, и тогда искусственные спутники позволили исправить географические карты.

15. Уравнение пятой степени

В XVI веке математики почти случайно натолкнулись на комплексные числа (см. Главу 11). К XVIII веку комплексные числа считались расширением области действительных чисел, но работа с ними все еще приводила к ошибке четности, как в труде Леонарда Эйлера «Универсальная арифметика» (1767–1770). Он писал, что - 2х - 3 = 6, а не -6, смущая более поздних авторов, писавших на ту же тему. Даже Карл Фридрих Гаусс (1777–1855) в своем великом труде по теории чисел «Арифметические исследования» (1801) избегал использования так называемых «мнимых чисел». Как мне кажется, самая важная часть этой работы — первое доказательство фундаментальной теоремы алгебры. Гаусс понял, насколько важной была эта теорема, создав за последующие годы несколько дополнительных доказательств. В 1849 году он переделал первый вариант, на сей раз использовав комплексные числа. Пользуясь современными терминами, можно сказать, что для любого конечного многочленного уравнения с действительными или комплексными коэффициентами все его корни будут действительными или комплексными числами. Таким образом, мы получаем отрицательный ответ на давний вопрос о том, требует ли решение полиномиальных уравнений высокого порядка создания чисел более высокого порядка, чем комплексные.

Одной из самых тернистых проблем алгебры того времени был вопрос, разрешим ли алгебраическими методами, то есть с помощью конечного числа алгебраических шагов, полиномиал пятого порядка — квинтик. Сейчас в школе учат формулу решения квадратных уравнений, а с XVI века известны аналогичные методы для решения уравнений третьей и четвертой степени (Глава 11). Но для квинтиков не было найдено ни одного метода. Может показаться, что фундаментальная теорема алгебры содержит перспективу положительного ответа, но на самом деле она просто гарантирует, что решения существуют, в ней ничего не говорится о существовании формул, дающих точные решения (к тому времени уже существовали приблизительные числовые и графические методы). И вот появились два математических гения с трагической судьбой.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже