Читаем История математики. От счетных палочек до бессчетных вселенных полностью

Прежде чем обратиться к Птолемею, мы должны упомянуть одного из наиболее известных его предшественников — Гиппарха (ок. 190 — ок. 120 до н. э.), математика из Никеи, города, находящегося в современной Турции. Его считали величайшим астрономом своего времени. Считается, что именно он создал астрономию, базирующуюся на греческих геометрических принципах. Как основу тригонометрии он использовал деление круга на 360 градусов, где каждый градус делился еще на шестьдесят минут. Его трактат на эту тему включал таблицу хорд — аналог современных таблиц тригонометрических функций (хорды Гиппарха — это, по современным понятиям, синусы). Значения хорд были вычислены для круга с радиусом 3438 минут — именно такой радиус необходим для того, чтобы окружность составила 360 х 60 = 21 600 минут. Эти таблицы, очень похожие на те, что существовали в индийской математике, позволили Гиппарху более точно описать положения небесных тел. Он смоделировал движение Солнца и Луны, используя геоцентрическую систему эпициклов. Гиппарх признавал: его данные были недостаточно точными, для того чтобы рассуждать об орбитах других планет. К сожалению, до нас дошла лишь одна из незначительных его работ, и он, как многие другие греческие астрономы, потерялся в тени Птолемея.

Клавдий Птолемей (ок. 87–165) жил в Александрии, и мы знаем, что он начал заниматься астрономическими наблюдениями 26 марта 127 года. О его семье известно очень немногое, неясны также точные даты его рождения и смерти. Птолемей оставил несколько сочинений, самое известное из них называется «Синтаксис» («Математическое построение»). Эта работа была повсеместно признана, и впоследствии, около 820 года нашей эры, когда ее перевели на арабский язык, заслужила название «Аль-Маджисти» («Величайшая»). Затем, после перевода на латынь, она стала известна как «Альмагест». Этот труд Птолемея для астрономии — то же, что «Начала» Евклида для геометрии. В результате, б ольшая часть трудов, написанных до Птолемея, канула бы в небытие, если бы не собственный исторический комментарий автора «Синтаксиса». Он начинается с некоторых предварительных замечаний из области тригонометрии и расчета хорд, после чего излагается теория движения Солнца по круговой орбите. Однако, по мнению Птолемея, Земля располагалась не совсем в центре орбиты, несколько сместившись, — это положение он назвал эксцентрикой. Создавая теорию движения Луны, Птолемей многое позаимствовал у Гиппарха, но изменил к лучшему его модель эпициклов. Затем, комбинируя движения Солнца и Луны, Птолемей обсуждал лунные и солнечные затмения. После этого следовало доказательство, что сфера из неподвижных звезд — внешняя оболочка эллинского космоса — действительно неподвижна. Этот вывод делается из собственных наблюдений Птолемея за звездами; здесь он соглашается с мнением Гиппарха, составленным на основании наблюдений, которые были проведены приблизительно за двести лет до него. Птолемей приводит обширный каталог с описанием более тысячи звезд, а затем обозначает орбиты остальных пяти планет. В этой изобретательной конструкции использовался эквант — точка, находящаяся на таком же расстоянии от Земли, как и эксцентрик, но с противоположной стороны. Птолемей строит циклы планет так, чтобы они имели постоянную скорость относительно экванта. Вращение Земли вокруг Солнца было несовместимо с пониманием земной динамики того времени — считалось: если бы Земля двигалась, мы обязательно слетели бы с ее поверхности. Модель Птолемея, безусловно, самая успешная попытка создания прогнозирующей астрономии за все время существования этой науки, она воспроизводила видимые движения планет, включая ретроградные петли. Любые несоответствия в измерениях обычно не выходили за пределы погрешности методов измерения. Эта система не вызывала серьезных сомнений вплоть до шестнадцатого века, так что до этого времени, в течение 1400 лет, «Альмагест» Птолемея был непререкаемым авторитетом.

<p>3. Теорема Пифагора</p>

Каждый из нас сталкивался в школе с этой теоремой. Сейчас ее называют «теоремой Пифагора», но она была широко известна в древности задолго до рождения знаменитого грека. Существование этой теоремы дает нам возможность сравнить стили математических рассуждений и основные направления работы некоторых древних математиков, относящихся к различным культурам.

Теорема Пифагора: в прямоугольном треугольнике сумма квадратов двух более коротких сторон равна квадрату наиболее длинной стороны. Можно построить такие треугольники с целочисленными сторонами; самый известный из них — треугольник со сторонами 3, 4, 5. Существует бесконечное множество таких, как их называют, пифагоровых треугольников, например треугольники со сторонами 5,12,13 и 7, 24, 25, которые также были известны в древности.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное