Я еще не сделал открытие, но путь, которым я иду, почти наверняка приведет меня к цели, поскольку показывает, что она достижима. Я еще не дошел до конца, но то, что мне удалось обнаружить, оказалось настолько великолепным, что я был просто поражен. Было бы невероятно жаль, если бы это оказалось отброшенным как Вы, мой дорогой отец, сочли необходимым допустить, когда увидели это. Все, что я могу сказать сейчас, — то, что я создал из ничего новый и совершенно иной мир. Все, что я отправил Вам к настоящему времени похоже на карточный домик рядом с каменной башней.
Саккери легко отверг третью гипотезу как приводящую к логическим противоречиям. Однако первая гипотеза не создавала никаких логических проблем. Используя этот новый постулат, он мог доказывать теорему за теоремой. Саккери выстроил самую первую неевклидову геометрию, но отказался поверить этому. Как мы помним, его главная цель — опровергнуть истинность этой гипотезы, а не создать новую геометрию. Вновь обратившись к церковному учению, он отверг новую геометрию на ошибочных теологических основаниях. Однако математики, жившие после него, оказались более доверчивыми.
Навязчивая идея о пятом постулате имела более глубокое значение, чем просто чистота логики. Под угрозой оказалась сама природа физического пространства. Евклидова геометрия была не только последовательной и разумной математической системой, но и принципом, по которому структурировалось пространство — самая короткая линия между двумя точками была прямой линией не только в теории, но и на практике. Казалось бы, уже существовала хорошо сформулированная геометрия, в которой даже это не было истинным, — классическая сферическая геометрия. Самая короткая линия между двумя точками на сфере — это дуга, часть большого круга, соединяющая две точки. Кроме того, сумма углов любого треугольника на сфере в целом больше 180°. Так из-за чего вся эта суета? Все сводилось к различию между тем, что называли внутренними и внешними свойствами геометрии. Внешние свойства — те, которые можно вывести вне системы; внутренние — те, которые выводятся из самой системы. Например, правила сферической геометрии могут быть выведены из наблюдения сферы извне, скажем, за шаром в руке, но как мы можем сказать с геометрической точки зрения, живем мы на сфере или нет? Как геометрически определить, живем мы на плоской Земле или на сферической? Или, иначе говоря, есть ли какие-то внутренние свойства, отличающие плоскость от сферы? Эти относительно простые понятия важны для изучения истинной природы трехмерного пространства, в котором мы имеем доступ только ко внутренним свойствам.
Иоганн Генрих Ламберт (1728–1777) изучал лишь небольшой раздел общей неевклидовой геометрии. В своей книге «Теория параллельных» (1786, издана посмертно) он использовал метод, похожий на тот, который применил Саккери. Ламберт взял треугольник и предположил, что сумма его углов меньше, равна или больше 180°. Он также показал, что сферическая геометрия соответствует третьему из этих предположений, и рассуждал, что первый случай мог бы соответствовать геометрии на сфере с мнимым радиусом. Замена реального радиуса на мнимый приводила к теоремам и формулам, объединенным в то, что позднее стало называться гиперболической геометрией. В ней знакомые
К началу XIX века, когда все попытки доказать пятый постулат закончились поражением, математики поняли, что возможны другие непротиворечивые геометрии, кроме евклидовой. И вот на сцену выходят два неизвестных математика, совершающих одновременное открытие.