Впервые уравнения Максвелла с успехом были использованы в телеграфии и радиокоммуникациях. Хевисайд преобразовал его уравнения для телеграфии, где принял во внимание самоиндуктивность в линиях передач, которая была пропущена другими исследователями. Это привело к внедрению индуктивных катушек, чтобы повышать уровень сигнала, идущего по кабелям, в особенности по трансатлантическому кабелю. В 1902 году Гульельмо Маркони сумел успешно передать радиосигналы через Атлантику. Это подарило математическим физикам проблему точного моделирования того, как именно электромагнитные волны движутся в атмосфере Земли, особенно когда приемник находится вне поля зрения передатчика. С тех пор телекоммуникационная промышленность больше никогда не оглядывалась назад.
19. Заманчивая бесконечность
Математики и философы всегда боролись с понятием бесконечности. Греки боялись бесконечности и ее противоположности — бесконечно малых величин. Их страх время от времени всплывал на поверхность, особенно это заметно в определениях дифференциального и интегрального исчислений. Наконец в девятнадцатом веке проблема встала в полный рост. Результаты работы многих умов преобразовались во множество различных направлений математики, но сражение с бесконечностью и получившаяся в результате теория множеств была работой одного человека — Георга Кантора. Стимулом к этому стали все увеличивающееся использование бесконечных рядов и сомнения в их обоснованности.
Коши отобразил фундаментальные понятия дифференциального и интегрального исчислений в терминах арифметики, а не геометрии (это называлось арифметизацией исчисления). В отличие от древнегреческой традиции, в которой геометрии предоставлялось почетное место самого точного научного метода, девятнадцатый век поставил своей целью преобразовать математический анализ в арифметические образы. Это в значительной степени достигалось путем все увеличивающегося использования функций многочисленных переменных и функций комплексных переменных, визуальное представление которых часто было невозможно.
В 1822 году Жозеф Фурье (1768–1830) издал свой классический труд «Аналитическая теория тепла». Анализируя тепловой поток, Фурье решил получающееся дифференциальное уравнение способом, который стал известным как ряд Фурье. Согласно Фурье, любая функция может быть представлена бесконечным рядом синусов и косинусов, причем не только непрерывные функции, но даже прерывные или имеющие разрывы. Однако некоторые ученые начали сомневаться, что этот бесконечный ряд всегда сходится к необходимой функции, а немецкий математик Иоганн Петер Лежён-Дирихле (1805–1859) доказал, что это происходит только при наличии определенных ограничений. Дирихле обобщил понятие функции: он заявил, что любое правило, связывающее
Галилей в своем анализе ускорения говорил, что, взяв бесконечный ряд натуральных чисел — 1, 2, 3… и возведя их в квадрат, вы получаете ряд 1,4, 9… Теперь, каждому числу из второго ряда может быть поставлено в соответствие число из первого ряда, таким образом, два ряда будут иметь одно и то же число членов. Но во втором ряду часть чисел отсутствует, так что в нем должно быть меньше элементов, чем в первом. Или две бесконечности были одинаковыми, или могут существовать различные виды бесконечности.
Бернхард Больцано (1781–1848), священник, живший в Праге, разработал интересные идеи, которые, к сожалению, долгое время оставались не замеченными учеными. Он выполнял арифметизацию дифференциального и интегрального исчислений методами, очень похожими на те, которые применял Коши, который во время своего изгнания бывал в Праге и встречался с Больцано. В своей работе «Paradoxien des Unendlichen», изданной посмертно в 1850 году, Больцано показал, что парадоксы вроде того, что обнаружил Галилей, обычны не только среди натуральных, но и среди действительных чисел. Например, в одном линейном сегменте то же число действительных чисел, что и в линии вдвое большей длины, что кажется алогичным и трудным для понимания. Этот богемский философ, похоже, очень близко подошел к пониманию того, что бесконечность действительных чисел относится к совершенно иному типу, чем бесконечность натуральных чисел. Он также внес свой вклад во все возрастающий список патологических функций, которые нарушали привычные правила исчисления.