Читаем История Персидской империи полностью

Пятая колонка дает положение новой и полной луны, так как Кидинну обнаружил, что чем ближе проходит путь Луны к эклиптике, тем выше вероятность затмения. Ему нужно было узнать продолжительность периода, после которого Луна возвращается в ту же точку пересечения орбит, так называемый «месяц дракона». В таблице цифры движутся от нуля, где Луна пересекала эклиптику, вверх или вниз (перед числительным стояли слова «над» или «под»), до максимума 9 52 15, 4 градуса 56' 7",5 со знаком плюс или минус. Обычная разница составляет 3 52 40, поделенная, разумеется, на неравные части, когда восходящий или нисходящий ряд проходит через ноль. После точки «ноль» делается обычная поправка: 0 52 30 вместо 3 52 30. Вычисление показывает, что 5,458 синодического месяца равняются 5,923 «месяца дракона»; таким образом, у Кидинну «месяц дракона» длится 27 дней 5 часов 5 минут 35,81 секунды — ровно столько, сколько и у нас.

В шестой колонке давались ежедневные перемещения Солнца. Обычная разница составляет 0 36 до максимума в перигее 15°16'35'' и минимума в апогее 11°5'5''; это указывало на среднее значение 13°10'35'', но грек, который, очевидно, использовал утраченный учебник, дает «халдейскую» величину более точно — 13°10'34'' 51'" 3"", 6, что не дотягивает до реального значения всего на 1'" 38"",4. Путем изучения максимумов и минимумов мы находим, что 251 синодический месяц равнялся 269 аномалистическим месяцам.

Седьмая колонка дает сумму, которую мы должны прибавить к 29 дням, чтобы определить самый длинный и короткий синодические месяцы; разница составляет 22 30, максимум — 4 29 27 5, а минимум 1 52 34 35. Поэтому у Кидинну синодический месяц равен 29 дням 12 часам 44 минутам 31/3 секунды, аномалистический — 27 дням 13 часам 18 минутам 34,7 секунды — на 1,9 секунды меньше современной величины.

Эта колонка предполагает, что движение Солнца постоянно, но следующая корректирует движение Солнца. Максимум 21, или 1 час 24 минуты, составляет в перигее, когда движение Солнца убыстряется, и у Луны уходит больше времени на то, чтобы пересечься с ним, поэтому на шесть месяцев знаки положительные; минимум той же величины находится в апогее, когда верно обратное. По мере смены знаков, плюса или минуса, мы прибавляем или вычитаем то, что стоит в этой колонке, из предыдущей строки в следующей колонке, чтобы получить в ней поправку к длине синодического месяца, которую дает седьмая колонка при допущении неизменяющегося движения солнца. Максимум теперь плюс или минус 32 28, или 2 часа 9 минут 52 секунды, что дает возможные вариации синодического месяца на протяжении изменяющегося движения Солнца в пределах 4 часов 19 минут 44 секунд.

Точные промежутки между двумя пересечениями или оппозициями показаны в десятой колонке, которая получается из седьмой путем прибавления или вычитания данных, содержащихся в девятой колонке. Путем прибавления к ее последней строке величин следующей строки в предыдущей колонке одиннадцатая дает дату астрономического новолуния. Так как седьмая колонка дает правильную продолжительность синодического месяца, но не аномалистическую траекторию движения Луны или длину месяца, и, так как девятая колонка недостаточно точно придерживается неправильной траектории движения Солнца, вычисленная дата отличается от наших расчетов от получаса до двух с половиной часов; это также объясняет разные варианты времени рассчитанных затмений.

Еще шесть колонок, которые еще не были должным образом изучены ни одним астрономом, вычисляют дату реального новолуния, так как на практике месяц по-прежнему начинался с ее появления. Таким образом, система Кидинну остается для нас незавершенной. К тому же наши вычисления должны основываться на грубых приближениях таблиц, так как руководство Киддину, в отличие от Набуриманни, не сохранилось, и одна греческая цитата из него доказывает гораздо большую точность вычислений по его системе. Но даже без его теоретических выкладок слава ему обеспечена.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже