Стекла внутри иллюминатора протереть тряпочкой во время полета уже не получится, а потому никакой мусор в камеру (межстекольное пространство) попадать категорически не должен. Кроме того, стекла не должны ни запотевать, ни замерзать. Поэтому перед стартом у космического корабля заправляют не только баки, но и иллюминаторы – камеру заполняют особо чистым сухим азотом или сухим воздухом. Чтобы «разгрузить» собственно стекла, давление в камере предусматривается вдвое меньшим, чем в герметичном отсеке. Наконец, желательно, чтобы с внутренней стороны поверхность стенок отсека не была слишком горячей или слишком холодной. Для этого иногда устанавливают внутренний экран из оргстекла.
На данный момент противометеоритные прозрачные покрытия не имеют аналогов в мире. Они защищают иллюминаторы от космической пыли.
Прозрачные многослойные наноструктурные металлокерамические покрытия обладают высокой релаксационной способностью (свойство материала гасить энергию), что позволяет защитить стекло от ударов высокоскоростных микрочастиц. Такие покрытия имеют несколько разделительных границ между наноструктурными слоями специально подобранных материалов, что позволяет им рассеять энергию от удара вдоль поверхностного слоя стекла, избежав появления на нем кратера. Ученые поясняют, при бомбардировке микрочастиц со скоростью 5–8 км/с резко уменьшается количество образующихся кратеров. Это позволяет стеклу сохранять в течение длительного срока эксплуатации свои оптические свойства и прозрачность.
При полете космического аппарата к одной из комет в ее составе было обнаружены две «головы» – ядра. Это было признано важным научным открытием. Потом выяснилось, что вторая «голова» появилась вследствие запотевания иллюминатора, приведшего к эффекту оптической призмы.
Стекла иллюминаторов не должны изменять светопропускания при воздействии на них ионизирующего излучения от фоновой космической радиации и космических излучений, в том числе – в результате вспышек на Солнце.
Взаимодействие электромагнитных излучений Солнца и космических лучей со стеклом – вообще явление сложное. Поглощение излучения стеклом может привести к образованию так называемых «центров окраски», то есть к уменьшению исходного светопропускания, а также вызвать люминесценцию, поскольку часть поглощенной энергии может немедленно выделиться в виде световых квантов.
На Международной космической станции появился обзорный купол, состоящий из нескольких больших иллюминаторов четырехугольной формы и круглого восьмисотмиллиметрового иллюминатора.
Модуль Cupola предназначен для наблюдений Земли и работы с манипулятором. Его разработал европейский концерн Thales Alenia Space, а строили итальянские машиностроители в Турине.
В еще более тяжелых условиях работают иллюминаторы спускаемых аппаратов. При спуске в атмосфере они оказываются в облаке высокотемпературной плазмы. Кроме давления изнутри отсека на иллюминатор при спуске действует внешнее давление. А потом следует приземление – часто на снег, иногда в воду. При этом стекло резко охлаждается. Поэтому здесь вопросам прочности уделяют особое внимание.
Линии связи
Современные линии связи осуществляются с помощью волоконно-оптического кабеля. Эта система представляет собой структуру, состоящую из прозрачного, центрально расположенного сердечника из кварцевого стекла, окруженного оболочкой и специальным защитным покрытием.
Основное применение оптические волокна находят в качестве среды для передачи информации в волоконно-оптических телекоммуникационных сетях различных уровней: от межконтинентальных магистралей до домашних компьютерных сетей. Волоконно-оптическая система работает путем передачи световых импульсов, генерируемых световым излучателем, расположенным на одном конце волокна. 99 % интернет-информации во всем мире проходит через оптоволокно, которое проложено по дну морей и океанов на глубине до 8 км? Для того, чтобы кабель не был раздавлен сильным давлением воды, его специально «бронируют».
ВОЛС
Основной сферой применения для оптических волокон является передача информации в телекоммуникационных сетях разного типа. У оптоволоконных сетей (они же ВОЛС) есть отличительные преимущества: высокая степень защиты от несанкционированного доступа; высокая скорость исходящего и входящего сигнала; возможность манипуляции этими скоростями, несмотря на их существенные недостатки по скорости распространения сигнала, в сравнении с медными кабелями. Благодаря этим качествам, оптоволокна используют, как в домашних телекоммуникационных сетях, так и на межконтинентальном уровне.
Каждое волокно в кабели использует технологию уплотнения каналов с помощью спектров, поэтому они могут передавать одновременно до сотен сигналов, что позволяет достичь скорости для передачи информации в несколько терабит. Наивысшая скорость, которую удалось зафиксировать, равна отметке в 255 Тбит в секунду.
Волоконно-оптические датчики