Важен ли углерод для жизни во всей Вселенной? Как насчет кремния, который так часто всплывает в научно-фантастических романах в качестве базового структурного атома для различных экзотических форм внеземной жизни? Как и в случае с углеродом, атомы кремния могут одновременно соединяться с четырьмя другими атомами, однако природа образуемых кремнием связей такова, что его популярность в роли кандидата в создатели структурных основ для образования более сложных молекул несравнима с углеродом. Углерод формирует с другими атомами довольно слабые связи, поэтому, к примеру, пары атомов углерод-кислород, углерод-водород и углерод-углерод разбить довольно просто. Это позволяет основанным на углероде молекулам формировать все новые типы молекул, сталкиваясь и взаимодействуя друг с другом, без чего невозможно представить себе активный обмен веществ, обязательный любой формы жизни. В отличие от углерода, кремний формирует очень прочные связи со многими другими атомами, особенно с кислородом. Земная кора состоит преимущественно из силикатных — кремниевых — пород, образовавшихся в основном из атомов кремния и кислорода, соединенных друг с другом достаточно крепко для того, чтобы просуществовать незыблемо на протяжении миллионов лет. Эти соединения будет довольно трудно заставить поучаствовать в образовании новых типов молекул.
Различия в механике формирования углеродом и кремнием химических связей с другими атомами подсказывает нам, что мы с гораздо большей вероятностью обнаружим внеземные формы жизни, в основе которых будут лежать углеродные, а не кремниевые молекулярные хребты. Помимо этой парочки, остается лишь несколько довольно экзотических типов атомов, распространенных во Вселенной во много раз меньше, чем углерод и кремний, которые могли бы одновременно соединяться сразу с четырьмя другими атомами. Исключительно из статистических соображений вероятность того, что где-то существуют формы жизни, образованной с помощью, скажем, германия — таким же образом, как земная жизнь образовалась на основе углерода, — кажется весьма и весьма незначительной.
Пункт 3 говорит о том, что всем формам жизни необходим жидкий растворитель, в котором молекулы вещества могли бы плавать и взаимодействовать между собой. Здесь слово «растворитель» подчеркивает тот факт, что подобная ситуация, в которой молекулы могли бы «плавать и взаимодействовать», возможна именно в «растворе». Обычная жидкость, как бы сильно она ни была насыщена молекулами, никак не ограничивает подвижность этих самых молекул в своем составе. С другой стороны, в твердых веществах атомы и молекулы имеют свое четко определенное место. Они все еще могут сталкиваться и взаимодействовать, но это происходит в разы медленнее, чем в составе жидкостей. Если взять газ, то там молекулы перемещаются еще более свободно, чем в жидкостях, и могут сталкиваться друг с другом с еще меньшими препятствиями; но их столкновения и взаимодействия происходят по факту в разы реже, чем в жидкостях, потому что плотность газа, как правило, минимум в 1000 раз ниже плотности жидкости. «Если бы только нам хватало мира и времени», как однажды сказал Эндрю Марвел, мы, может, и обнаружили бы истоки жизни в газах, а не в жидкостях. В реальном космосе, которому всего-то 14 миллиардов лет, астробиологи не рассчитывают когда-нибудь обнаружить жизнь, возникшую внутри газовой среды. Нет — они ожидают, что вся внеземная жизнь, как и земная, полагалась, полагается и будет полагаться на резервуары жидкости, внутри которой с помощью сложных химических процессов разные типы молекул сталкиваются друг с другом и образуют все больше новых химических соединений.