Откуда на Земле целые океаны воды? Почти первозданный кратерный рельеф Луны сообщает нам, что космические объекты таранили ее на протяжении всей истории. Мы имеем все основания полагать, что и Земля подверглась аналогичному множеству столкновений. Действительно — более крупный размер Земли и, как следствие, ее более значительная гравитация означают, что нас должно было ударять гораздо чаще и гораздо большими объектами, чем Луну. Так было с самого ее рождения и до сегодняшних дней. Как бы там ни было, Земля не выскочила в один прекрасный момент из некой межзвездной пустоты, вся такая круглая и готовая играть свою роль в космическом театре. Вместо этого наша планета понемногу формировалась и росла внутри газового облака, из которого также образовались Солнце и другие планеты нашей системы. В рамках этих процессов Земля увеличивалась в размере, приращивая к себе огромные количества малых твердых частиц, а затем и за счет непрерывных ударов богатых минералами астероидов и содержащих в себе немало воды комет. Что значит «непрерывных»? Ранняя частота встреч с кометами должна была быть достаточно высокой того, чтобы обеспечить нас всех той водой, что сегодня составляет земные океаны. Неопределенность и противоречия все еще являются неотъемлемой частью этой гипотезы. В воде, обнаруженной в комете Галлея, содержится в разы больше дейтерия, чем в земной воде: это изотоп водорода, который отличается от самого водорода на один дополнительный нейтрон в своем ядре. Если океаны Земли прибыли к нам на борту комет, тогда те, что сталкивались с нашей планетой вскоре после формирования Солнечной системы, по химическому составу должны были отличаться от комет, с которыми мы имеем дело сегодня, как минимум отличаться от того класса комет, к которым принадлежит комета Галлея.
Так или иначе, когда мы учитываем не только кометный вклад, но и тот водяной пар, что вырывается из жерл вулканов во время их извержений, у нас на руках оказывается множество вариантов, с помощью любого из которых Земля могла запастись водой, покрывающей сегодня большую часть ее поверхности.
Если вы хотите отдохнуть на безводном и безвоздушном курорте, вам нет смысла искать его по всей Солнечной системе — достаточно нашей земной Луны. Околонулевое атмосферное давление Луны в сочетании с ее двухнедельным «световым днем», в течение которого температура у ее поверхности достигает 200 градусов по шкале Фаренгейта, быстренько испарит любую воду, что могла бы там оказаться. Во время двухнедельной «ночи» на Луне температура на ней падает до 250 градусов ниже нуля, чего достаточно, чтобы заморозить практически что угодно. Астронавты миссии «Аполлон», которым довелось побывать на Луне, были вынуждены взять с собой столько воды и воздуха (и кондиционеров для воздуха), чтобы их хватило на путешествие в оба конца и на пребывание на самой Луне.
Кажется довольно странным, что на Земле накопилось столько воды, в то время как столь близко расположенная к ней Луна не получила ее совсем. Один из вариантов развития событий — как минимум частично правдивый — заключается в том, что вода в свое время гораздо быстрее испарилась с поверхности Луны, чем Земли, из-за ее существенно меньшей силы притяжения. Другой вариант предполагает, что в будущем полеты на Луну смогут-таки обходиться без того, чтобы каждый раз привозить с собой воду ее производные. Наблюдения лунного орбитального космического аппарата «Клементина», оснащенного инструментами обнаружения нейтронов, образующихся в результате столкновения быстро движущихся межзвездных частиц с атомами водорода, поддерживают уже давно существующие догадки о том, что под кратерами у Северного и Южного полюсов Луны могут храниться большие запасы льда — глубоко замерзшей воды. Если межпланетный мусор с определенной периодичностью падает на Луну в течение года, то среди всевозможных падающих на нее объектов должны хотя бы изредка появляться и кометы, несущие на борту воду. Насколько большими могут быть эти кометы? В Солнечной системе летает немало комет, которые, растаяв, окажутся лужей размером с озеро Эри.