Читаем История всего полностью

Если бы не эта одна-единственная дополнительная частица вещества на каждый миллиард частиц антивещества, вся масса Вселенной за исключением темной материи, чья форма до сих пор неизвестна, аннигилировала бы по истечении первой же секунды своего существования: остался бы космос, в котором не было бы ничего, кроме фотонов. По сути, это самый близкий к историческому «Да будет свет!» сценарий, какой только можно себе вообразить.

С начала всех начал прошла уже целая секунда.

Для Вселенной температура в невообразимый 1 миллиард градусов — все еще «достаточно не холодно», чтобы производить электроны, которые наряду со своими напарниками-позитронами продолжают появляться и исчезать. Однако их дни в этой постоянно растущей и остывающей Вселенной уже сочтены. Что раньше было характерно адронов, теперь сбывается и электронов и позитронов: сталкиваясь, они аннигилируют, и в итоге остается один электрон из миллиарда — последний уцелевший герой после взаимного пакта о самоубийстве между частицами вещества и антивещества. Остальным же электронам и позитронам было суждено погибнуть, чтобы заполнить Вселенную еще большим количеством фотонов.

Подошла к концу эпоха электронно-позитронных аннигиляций, и космос «замирает» в состоянии, в котором на каждый электрон приходился один протон. Охлаждение продолжается, температура уже упала ниже 100 миллионов градусов, протоны сливаются с другими протонами и нейтронами, формируя собой атомные ядра и приводя к рождению Вселенной, в которой 90 % таких ядер — это водород, еще почти 10 % — гелий и крошечную долю также составляют дейтерий, тритий и литий.

С начала всех начал прошло две минуты.

С нашим весьма аппетитным бульоном из атомных ядер водорода и гелия, электронов и позитронов в следующие 380 тысяч лет ничего особого не происходит. Все эти сотни тысячелетий температура Вселенной все еще остается достаточно высокой, чтобы позволить электронам свободно перемещаться между фотонами, толкаясь и подпихивая их.

В главе 3 мы подробнее расскажем, как это свободное перемещение резко закончилось, стоило температуре Вселенной упасть ниже 3000 градусов по шкале Кельвина (это примерно в два раза холоднее поверхности Солнца). Ну а пока электроны понемногу начинают вращаться вокруг отдельных атомных ядер, один за другим создавая атомы. Этот процесс соединения приводит к формированию Вселенной, в которой новенькие атомы купаются в едином море из фотонов видимого света. На этом и заканчивается история о том, как в первичной Вселенной были сформированы частицы и атомы.

Вселенная продолжает расширяться, а значит, ее фотоны все еще теряют энергию. Сегодня, куда бы астрофизики ни кинули взгляд, они обнаруживают космические следы микроволновых фотонов при температуре 2,73 градуса, что представляет собой тысячекратную потерю фотонами энергии с тех пор, как в мире сформировался самый первый атом. Траектории движения фотонов в небе — то конкретное количество энергии, поступающей из самых разных направлений, — содержат в себе следы распространения вещества во Вселенной тех самых времен, когда атомы еще не начали формироваться. Из этих траекторий астрофизики способны делать знаменательные выводы, включая предполагаемые возраст и форму Вселенной. Несмотря на то что сегодня атомы являются неотъемлемой составляющей существования Вселенной, уравнение Эйнштейна отнюдь не следует сбрасывать со счетов: оно актуально для ускорителей частиц, в которых пары из вещества и антивещества создаются из энергетических полей для ядра Солнца, где 4,4 миллиона тонн вещества ежесекундно превращаются в энергию, а также для ядер всех остальных звезд.

Формула E = mc2 умудряется напомнить о себе даже вблизи черных дыр, буквально сразу же за пределами досягаемости их условного радиуса: здесь пары частиц и их античастиц рождаются за счет феноменальной гравитационной энергии черной дыры. Британский космолог Стивен Хокинг впервые описал подобные выходки в 1975 году, показав, что вся масса черной дыры целиком может медленно испаряться благодаря данному механизму. Другими словами, черные дыры оказались не совсем черными. Это явление называют излучением Хокинга, и оно служит напоминанием о том, сколь плодотворно самое знаменитое уравнение Эйнштейна.

Но что же произошло до всей этой вселенской суматохи? Что произошло до того, как все началось?

Астрофизики не имеют ни малейшего понятия. Точнее говоря, наши самые творческие идеи ничем или почти ничем не обоснованы в рамках экспериментальной науки. При этом верующие люди любят утверждать, нередко с легким оттенком самодовольства, что все же что-то конкретное должно было все это «начать», некая сила, превосходящая все остальные силы, исток у истоков мира. Некая первопричина. В голове такого человека это самое «что-то», конечно же, Бог, природа которого может различаться в глазах разных верующих, но который всегда оказывается в ответе за то, что «все началось».

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука