Читаем История всего полностью

Наиболее знакомая всем форма энергии освещает все вокруг, хотя многие даже не догадываются о ее энергетической сути и не задумываются о ее названии. Речь о фотоне — невесомой неделимой частице видимого света любой другой формы электромагнитного излучения. Мы живем, постоянно купаясь в море из фотонов: они исходят от Солнца, Луны и звезд; духовок, люстр и ночников; сотен теле- и радиостанций; бесчисленных сигналов сотовых телефонов и радаров. Почему же мы не наблюдаем, как день за днем, каждый день, энергия превращается в вещество или наоборот? Дело в том, что энергия обычных фотонов слишком мала, много меньше выраженной через формулу E = mc2 массы самых крохотных элементарных частиц. Такие фотоны производят слишком мало энергии, чтобы превратиться во что-либо еще, поэтому их удел — весьма незатейливое существование.

Хотите наглядный пример работы формулы E = mc2? Обратитесь к фотонам гамма-излучения — в них как минимум в 200 000 раз больше энергии, чем в видимых фотонах. Вы очень быстро заболеете раком и умрете, но перед этим вам удастся разглядеть пары электронов: один из вещества, а другой из антивещества (физики называют их электроном и позитроном соответственно). Как и множество подобных динамичных пар в нашей Вселенной, они будут появляться там, где раньше были фотоны. Вы также увидите, как эти пары электронов, сталкиваясь, аннигилируют и вновь превращаются в фотоны гамма-излучения.

Увеличим энергию фотонов еще в 2000 раз и получим гамма-лучи, энергии которых хватит на то, чтобы превратить предрасположенных к этому людей в зеленых монстров наподобие Халка. Пары таких фотонов обладают энергией, описанной уравнением E = mc2 и достаточной для того, чтобы создавать такие частицы, как нейтроны, протоны и их «антиверсии» — античастицы, каждая из которых будет почти в 2000 раз превышать массой обычный электрон. Фотоны с высокой энергоемкостью существуют во многих космических горнилах мироздания.

Для гамма-излучения подходит практически любая среда температурой выше нескольких миллиардов градусов. Трудно переоценить космологическую важность наличия частиц и квантовой энергии, превращающихся друг в друга. В данный момент температура нашей расширяющейся Вселенной, которую можно вычислить, измерив все микроволновые фотоны во всем мировом пространстве, составляет смешные 2,73 градуса по шкале Кельвина. В ней нет отрицательных температур: частицы с наименьшей энергией располагаются на нулевой отметке; комнатная температура составляет 295 градусов; вода кипит при 373 градусах. Как и фотоны видимого света, микроволновые фотоны выше любых суетных попыток превратиться в какие-то частицы под диктовку формулы E = mc2. Проще говоря, нам неизвестны частицы со столь малой массой, что в них мог бы превратиться микроволновый фотон. То же самое можно сказать и о фотонах, которые составляют радиоволны, инфракрасный и видимый свет, а также ультрафиолетовые и рентгеновские лучи. Еще проще говоря, для преобразований частиц необходимо гамма-излучение. Однако вчера Вселенная была чуть меньше и чуть горячее, чем сегодня, а позавчера — еще чуть меньше и горячее. Теперь откатимся назад, скажем, на 13,7 миллиарда лет и окажемся в самой гуще первичного бульона, образовавшегося после Большого взрыва. Тогда температура космоса была достаточно высокой того, чтобы представлять собой астрофизический интерес, а гамма-излучение постепенно наполняло Вселенную.

Расшифровка поведения пространства, времени, вещества и энергии от Большого взрыва до сегодняшнего дня — одна из величайших побед человеческого разума. Если вам требуется развернутое объяснение всего, что происходило еще раньше, когда Вселенная была меньше и горячее, чем когда-либо потом, вам нужно найти способ заставить четыре фундаментальных взаимодействия — гравитационное, электромагнитное, сильное и слабое ядерные — снова объединиться в одно целое и превратиться в единое метавзаимодействие. Вам также будет необходимо найти способ примирить между собой две физические дисциплины, которые в данный момент несовместимы друг с другом: квантовую механику (науку о малом) и общую теорию относительности (науку о большом).

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука