Ученые ищут пути воздействия на ген с мутацией, приводящий к возникновению заболевания. В большинстве случаев идея заключается в замещении патологического гена или недостаточности его работы. Для этого проводятся попытки доставить в клетку нормальных (правильных) фрагментов нуклеиновых кислот и включить их в копирование. Обычно используются модифицированные вирусы, способные проникать в клетки человека и размножаться в них. Возможно, вирус сможет доставить в клетку нужный участок ДНК, благодаря которому будет производиться нужный белок.
Генетическая терапия может быть применима к заболеваниям, в которых основную роль играют гены, активные после рождения. Некоторые проявления генов могут быть завершенными к моменту обращения пациента за генетической терапией или произошедшими во время формирования органа или ткани. Например, патология перекреста зрительных путей и макулярной области при альбинизме происходит внутриутробно, и вряд ли это можно будет изменить в будущем у родившегося человека с помощью генетической терапии. В то же время при некоторых типах альбинизма будет возможным увеличить количество пигмента в клетках, что облегчит течение заболевания.
Например, формирование радужки, зрительного нерва, макулярной области при врожденной аниридии обусловлено тем, что ген PAX6 при внутриутробном развитии работал не в полной мере (необходимо два гена PAX6, а у пациентов с врожденной аниридией нормально работающий только один). Однако недостаточность гена PAX6 проявляется и после рождения нарушением формирования эпителия роговицы, катарактой, глаукомой. Поскольку активность гена необходима и продолжается после рождения, на нее можно воздействовать при помощи генетической терапии (и такие попытки уже есть).
Основные возможные пути приложения генетической терапии такие:
• замена гена с мутацией нормальным;
• инактивация мутированного гена, работающего неправильно;
• внесение нового гена, который поможет бороться с заболеванием.
Генетическая терапия призвана внести генетический материал в клетку, чтобы компенсировать работу патологических генов (или ее отсутствие), и в итоге получить нормальный белок. Если ген, содержащий мутацию, кодирует неправильный белок или синтез белка вообще блокируется, генетическая терапия позволяет внести нормальный ген, который будет правильно функционировать и вести к синтезу белка.
Если просто ввести ген в клетку, он не будет работать. Необходимо использовать векторы – специальные вирусы – переносчики генов.
Некоторые вирусы часто выступают векторами, потому что могут доставить нужный ген в клетку. Вирусы генетически изменяются так, что не могут вызвать заболевание у человека. Некоторые типы вирусов, такие как ретровирусы, интегрируют свой генетический материал (включая нужный ген) в генетический материал человека. Другие вирусы (аденовирусы) доставляют свою ДНК в ядро клетки, но их ДНК не интегрируется в хромосомы человека.
Вектор может быть введен внутривенно или напрямую в нужную ткань. Возможно, некоторые клетки человека можно будет на время забирать для обработки вектором, а затем возвращать их в тело человека.
Исследователи должны решить множество задач, прежде чем генетическая терапия может быть технически применима для лечения заболеваний. Например, необходимо найти лучший путь для доставки гена к определенным тканям и быть уверенным, что экспрессия нового гена адекватна необходимости.
Мы немного отвлечемся непосредственно от генетической терапии и углубимся в физиологию бактерий. Бактерии – это простые одноклеточные организмы, не имеющие хромосом, их генетический материал меньше клетки человека. Бактерии живут в воздухе, воде, почве и появились на Земле намного раньше, чем все животные и растения.
Бактерии, как и люди, могут подвергаться вирусным заболеваниям. Есть вирусы, опасные для бактерий, – у них нет такой иммунной системы, как у человека, в иммунном ответе которого задействовано много клеток. Бактерия – сама по себе цельный и законченный одноклеточный организм с иммунной системой. И она имеет отношение к методам генной терапии.
В конце 1980-х годов в одном из видов бактерий ученые обнаружили повторяющиеся участки генома, которые ничего не кодировали. У бактерии генетический материал намного компактнее, чем у нас, и бессмысленная протяженность ДНК не может не вызывать вопросов. Между повторяющимися участками располагались и отличающиеся друг от друга. Позднее они были обнаружены и у других бактерий. Сравнивая эти участки с открытыми, ученые пришли к выводу, что это участки генома различных вирусов, которые могут атаковать бактерии и вредить им.