Читаем Юный техник, 2006 № 11 полностью

Совсем иначе протекает этот процесс в опытах А.М. Марахтанова. В качестве проводника он применил тончайшую металлическую пленку, напыленную на керамическую подложку. Как и в опытах с проволокой, электроны проводника выстраивались волнами, и на нем, чередуясь, возникали горячие и холодные участки (рис. 3).

Рис. 3.Под действием сильных токов на поверхности металлической пленки возникает чередование горячих и холодных участков.

Плотность тока увеличивали. Под конец опыта падение напряжения на проводнике оказывалось в тысячу раз больше, чем можно получить при комнатной температуре. Кинетическая энергия электронов возрастала в миллионы раз. При таких условиях электроны вылетают из кристаллической решетки. Остаются лишь сидящие в узлах положительно заряженные ионы атомов металла. Они, как и положено одноименным зарядам, разлетаются в стороны. Кристалл металла мгновенно взрывается. Причем энергия взрыва металла больше, чем у тринитротолуола и гексагена.

В ходе экспериментов выяснилось, что при помощи электрического поля можно высвободить запас энергии, которым обладают кристаллы многих металлов: вольфрама, свинца, меди, алюминия, железа и их сплавов.

Энергия взрыва превышает энергию вызывающего его импульса во много раз. Так, для алюминия мы получаем энергетический выигрыш в 66 раз, для никеля — в 171, для вольфрама в 2133 раза.

Подробности этих экспериментов можно найти в описании к патенту РФ № 2145147 (7 Н 02 N 3/00, 11/00) «Способ выделения энергии связи из электропроводящих материалов», авторы М.К. и А.М. Марахтановы.

Распад кристаллической решетки одного килограмма железа может дать столько же энергии, сколько запасает свинцовый аккумулятор весом 50 кг. С таким источником электромобиль проедет без остановки около трех тысяч километров. В конце пути на его борту окажется 1 кг железной пыли, которую можно будет переплавить и снова пустить в дело.

Недавно студенты кафедры «Плазменные энергетические установки» МГТУ им. Н.Э.Баумана «развлекались» пережиганием электрических ламп. На лампу, рассчитанную на 220 В переменного тока, подавали 380 В постоянного тока. Сила тока в момент пережигания нити достигала 0,33 А и была лишь в 1,5 раза больше номинального тока лампы. Поэтому никаких особых «чудес» со стороны электрического поля не ожидали. Но…

Вы можете повторить этот опыт. При разрушении спираль имеет наиболее высокую температуру — 2680 °C — посередине и совсем низкую — 180 °C — в местах крепления к электродам. Между тем температура плавления вольфрама составляет 3400 °C, и она не достигнута. Поэтому, строго говоря, не совсем понятно, отчего спираль все же разрушается.

Вот еще одно из «чудес», которое вы тоже сможете увидеть: из электрода, удерживающего спираль, всегда торчит наружу короткий прямой вольфрамовый волосок — технологический след обрезанной на производстве спирали. Ток по нему вообще не протекает, но вольфрамовый шарик все-таки образуется (рис. 4).

Рис. 4.Холодный вольфрамовый усик, по нему даже ток не течет, а капелька почему-то образовалась…

Как предположил профессор М.К.Марахтанов, причиной этого является не электричество, а создаваемая им теплота. Действительно, свободные электроны могут группироваться, локализовываться в металле под действием не только электрического поля, но и теплового. Только в этом случае необходима большая разность температур между расположенными вблизи точками металла. Тогда тепло совершает работу по перемещению электронов против сил электрического поля ионов кристаллической решетки металла. Возникающие в этот момент силы столь велики, что вслед за этими электронами перемещаются и атомы металла. Именно этим и объясняется образование шариков на холодных участках вольфрамовой проволоки. Происходит квантовая телепортация атомов металла под действием электронных волн.

Для наблюдения этого явления достаточно иметь регулируемый лабораторный автотрансформатор и двухполупериодный выпрямитель, соединенный с ламповым патроном. Лампу возьмите мощностью 60 — 100 Вт и плавно в течение 30–40 секунд повышайте напряжение, пока лампа не перегорит. Опыты проводите в темных очках для газосварки.

А.ИЛЬИН

Фото М. МАРАХТАНОВА

<p>ПОЛИГОН</p><p>Очень странный летающий объект</p>

На прошедшей в июне в Москве выставке научно-технического творчества молодежи НТТМ-2006 было немало интересного. Но экспонат, который показали ребята из Детского и молодежного центра «Сокольники», заслуживает особого рассказа.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже