Американские биотехнологи, использовав приложенную инструкцию, синтезировали несколько сотен тысяч нужных фрагментов ДНК, высушили их в вакууме и выслали получившуюся щепотку пыли в запаянной ампуле обратно в Англию. Там «запись» воспроизвели и убедились, что она читается почти со стопроцентной точностью.
Всего для записи информации было использовано 153 335 синтезированных коротких цепочек ДНК по 117 нуклеотидов (117 битов) каждая. Данные кодировались в четырех блоках по 25 нуклеотидов. В оставшихся 17 нуклеотидах (17 бит) были записаны адресные метки, необходимые для сборки данных в файловый массив.
Кодирование происходило в три этапа. Двоичный код, в котором были представлены данные, сначала конвертировали на компьютере в троичный. Далее 8-битные блоки данных представлялись в виде последовательности из пяти троичных чисел, или тритов (0, 1, 2). После этого триты конвертировались в код из трех нуклеотидов. Троичная кодировка позволяла не только сжать данные, но и уменьшить вероятность ошибок при последующем считывании ДНК и реконструкции двоичного массива.
Как уже сказано, любая ДНК представляет собой полимерную молекулу, в состав которой входят четыре нуклеотида (аденин, гуанин, тимин и цитозин — А, Г, Т, Ц). Для конвертации троичного кода достаточно трех, поэтому в каждом последующем троичном блоке основания можно было комбинировать по-разному, ведь один из четырех нуклеотидов в них мог отсутствовать. Это гарантировало, что при синтезе ДНК два одинаковых нуклеотида не пришлось бы стыковать в одну полимерную цепочку, что снижало вероятность ошибок при последующей реконструкции данных.
Справедливости ради отметим, что команда исследователей, описавшая технологию производства своей ДНК-памяти в журнале
Единственное существенное отличие в технологиях двух групп заключается в схеме кодирования двоичного потока в последовательность нуклеотидов. Так, группа Чёрча использовала простую схема конвертации, приняв пару разных оснований (например, АГ и ТЦ) за условные «ноль» и «единицу», а команда Сенчера использовала более сложный троичный алгоритм.
У СОРОКИ НА ХВОСТЕ
РАНЬШЕ БЫЛО ТЕПЛЕЕ.
В древней Антарктиде было значительно теплее, чем ныне. На шестом континенте даже росли деревья. К такому выводу пришла группа американских ученых из Лаборатории реактивного движения НАСА в Пасадине, а также Университетов Южной Калифорнии в Лос-Анджелесе и штата Луизиана в Батон-Руже.В своей работе ученые использовали радиоуглеродный анализ остатков растений, обнаруженных на шельфе Антарктиды под морем Росса, и методы компьютерного моделирования. Согласно выводу специалистов, 15–20 млн. лет тому назад средняя летняя температура на побережье Антарктиды была на 11 градусов Цельсия выше, чем в наши дни, и достигала 7 градусов тепла. Пик «озеленения» Антарктиды якобы пришелся на период, лежащий между 16,4 млн. и 15,7 млн. лет тому назад.
По словам руководителя проекта, сотрудницы Университета Южной Калифорнии Сары Фикинс, «конечная цель исследования заключалась в том, чтобы лучше понять, к чему может привести изменение климата в будущем», если глобальное потепление все же состоится.
КОВАРНЫЙ ШИМПАНЗЕ
. Шимпанзе Сантино, живущему в Стокгольмском зоопарке, очень надоели пристающие к нему посетители. И он стал отгонять их комьями грязи и камнями. А когда местные мальчишки, больше всего досаждавшие обезьяне, стали дразнить его и убегать, как только он принимался искать, чем бы в них швырнуть, Сантино придумал военную хитрость. Он стал заранее собирать по территории вольера подходящие камни и прятать их так, чтобы в случае необходимости с десяток «боеприпасов» всегда был у него под рукой.Говорят, обидчики с тех нор заметно присмирели, и жизнь у шимпанзе стала спокойнее.
ВТОРОЕ РОЖДЕНИЕ БУРАТИНО.
Папа Карло выстругал Буратино из волшебного полена. Но это было давным-давно. Если бы он занялся таким «производством» сегодня, оно могло бы выглядеть совершенно иначе.Французский инженер Жереми Франсуа обнаружил, что волокна нового материала, называемого
Причем изделия из этого материала можно изготовлять при помощи 3D-печати, а выглядят они при этом, как будто деревянные.
Экспериментировать с новым материалом легко позволяет специальное программное обеспечение. Так что единственная проблема — дефицит новой «древесины».