Читаем Юный техник, 2013 № 05 полностью

Правда, слово «метаться» не совсем точно отражает ситуацию. Когда длина световой волны сравнима с расстоянием между зеркалами, фотон уже не перемещается между зеркалами, а, как бы дрожа, замирает между ними — получается стоячая световая волна, опирающаяся на зеркала. Такая система зеркал называется резонатором.

Качество удержания фотона характеризуется добротностью резонатора Q. Это число показывает, попросту говоря, сколько раз (фотон отразится от зеркал, прежде чем каким-то образом исчезнет. Еще лет 30–40 тому назад в распоряжении физиков были резонаторы с добротностью в миллионы, а сейчас она уже достигает десятков миллиардов. В таком резонаторе микроволновой фотон будет «жить» десятые доли секунды — огромный промежуток времени для современной экспериментальной физики. За это время можно и породить фотон, и воздействовать на него, и «просканировать» его состояние.

Схема того, как возбужденный атом излучает фотон. Стандартное изображение вылетающего фотона как объекта, локализованного на атомном масштабе (вверху), дает неправильное представление о «начальных» размерах фотона. Гораздо более предпочтительней картинка, на которой фотон изображен в виде облака с размерами намного больше атомных (внизу).

В парижской лаборатории Ароша фотоны «запускали» в небольшую камеру объемом три кубических сантиметра с зеркальными стенками. Один-единственный фотон, оказавшийся в камере, мог просуществовать в ней, отражаясь от зеркал и не рискуя быть поглощенным, столько времени, что успевал пробежать в среднем 40 000 км — то есть совершить как бы кругосветное путешествие.

Столь долгое время жизни фотона позволило осуществлять с ним квантовые манипуляции, выявить его наличие в камере в те или иные моменты времени, посчитать, сколько фотонов побывало в ловушке за определенный временной промежуток.

А возможность точного подсчета квантов света открывает принципиальную возможность для создания квантовых компьютеров, которые, по идее, на десятки порядков будут превосходить лучшие нынешние вычислительные комплексы. Они за считаные мгновения смогут решать задачи, на которые современная вычислительная техника тратит недели, а то и месяцы рабочего времени.

Принципиальная схема квантового компьютера, работающего на цепочке холодных ионов, плененных в ловушке. Световые импульсы управляют логическими операциями между ионами, а чувствительная фотокамера детектирует свечение отдельных ионов и тем самым считывает результат операций.

Если Серж Арош научился манипулировать квантами света — фотонами, то не менее трудная с технической точки зрения задача управляться и с отдельными ионами — атомами, лишенными одного или нескольких электронов.

Здесь тоже используют ловушки, только уже не фотонные, а ионные. В них заряженные частицы удерживает переменное электромагнитное поле определенной формы. Такая технология была разработана полвека назад и принесла своим создателям, Вольфгангу Паулю и Хансу Демельту, Нобелевскую премию по физике за 1989 год.

При этом было замечено, что пленение и квантовый контроль отдельных ионов может иметь и далеко идущие практические применения. Например, их колебания позволяют создать сверхстабильный стандарт частоты, построить сверхточные атомные часы.

А такие часы, в свою очередь, позволили проверить экспериментально некоторые выводы теории относительности. Так, скажем, согласно теории, время течет по-разному в гравитационном поле разной напряженности. При удалении от поверхности Земли гравитационное поле начинает ослабевать, поэтому скорость хода часов, расположенных на разной высоте, будет отличаться. Так вот исследователям удалось заметить это расхождение при разнице высот меньше метра!

Дэвид Уайнленд пошел еще дальше. В его лаборатории проводились эксперименты по захвату ионов в «ловушку» из электрических полей. Чтобы полностью изолировать пойманные частицы от внешних влияний, эксперименты проводились в вакууме и при экстремально низкой температуре.

В итоге получился еще один эталон частоты, который опять-таки использован для создания сверхточных часов.

В отличие от цезиевых атомных часов (их погрешность 1 секунда в 300 лет), которые используют СВЧ-диапазон электромагнитных волн, часы Уайнленда работают в диапазоне видимого света. И точность их такова, что если бы с их помощью можно было начать отсчет времени в момент возникновения Вселенной, то сегодня они бы отстали или ушли вперед всего лишь на несколько секунд.

Перейти на страницу:

Похожие книги

1984. Скотный двор
1984. Скотный двор

Роман «1984» об опасности тоталитаризма стал одной из самых известных антиутопий XX века, которая стоит в одном ряду с «Мы» Замятина, «О дивный новый мир» Хаксли и «451° по Фаренгейту» Брэдбери.Что будет, если в правящих кругах распространятся идеи фашизма и диктатуры? Каким станет общественный уклад, если власть потребует неуклонного подчинения? К какой катастрофе приведет подобный режим?Повесть-притча «Скотный двор» полна острого сарказма и политической сатиры. Обитатели фермы олицетворяют самые ужасные людские пороки, а сама ферма становится символом тоталитарного общества. Как будут существовать в таком обществе его обитатели – животные, которых поведут на бойню?

Джордж Оруэлл

Классический детектив / Классическая проза / Прочее / Социально-психологическая фантастика / Классическая литература
Как стать леди
Как стать леди

Впервые на русском – одна из главных книг классика британской литературы Фрэнсис Бернетт, написавшей признанный шедевр «Таинственный сад», экранизированный восемь раз. Главное богатство Эмили Фокс-Ситон, героини «Как стать леди», – ее золотой характер. Ей слегка за тридцать, она из знатной семьи, хорошо образована, но очень бедна. Девушка живет в Лондоне конца XIX века одна, без всякой поддержки, скромно, но с достоинством. Она умело справляется с обстоятельствами и получает больше, чем могла мечтать. Полный английского изящества и очарования роман впервые увидел свет в 1901 году и был разбит на две части: «Появление маркизы» и «Манеры леди Уолдерхерст». В этой книге, продолжающей традиции «Джейн Эйр» и «Мисс Петтигрю», с особой силой проявился талант Бернетт писать оптимистичные и проникновенные истории.

Фрэнсис Ходжсон Бернетт , Фрэнсис Элиза Ходжсон Бёрнетт

Классическая проза ХX века / Проза / Прочее / Зарубежная классика