Читаем Из истории летательных аппаратов полностью

Развивая мысли Д. И. Менделеева, Н. А. Яцук берет в качестве основного условия постоянство соотношения мощности двигателя и площади крыльев, что для подобных форм эквивалентно постоянству скорости полета. Тогда развиваемая подъемная сила будет пропорциональна площади, т. е. n2; вес двигателя, приходящийся на 1 л. с., принимался постоянным, и тогда вес двигателей Gдв тоже оказывался пропорциональным n2. Что же касается веса конструкции Gкон, то она принималась пропорциональной кубу масштаба, т. е. величине n3. Такое предположение справедливо при условии полного подобия конструкции и постоянства напряжений, вызываемых весом грузов, т. е. двигателей, топлива и полезной нагрузки. Поставив такое условие, Н. А. Яцук оговаривается, однако, что оно может оказаться неправильным.

Из поставленных условий вытекает такое выражение для величины полезной нагрузки:

Эта формула дает быстрый начальный рост Gпол по мере увеличения n, а затем, после достижения некоторого максимума, следует быстрое уменьшение Gпол в результате резкого увеличения веса конструкции. Изобразив эту зависимость графически (рис. 1), мы можем видеть, что изменение параметра С и показателя степени при весе конструкции m, будет вызывать очень значительное изменение как максимальной полезной нагрузки, так и соответствующего ей масштаба летательного аппарата. Понимая недостоверность знаний об истинных значениях величин С и m, авторы исследований, естественно, бывали осторожны в своих выводах.

На графике, приведенном на рис. 1, были приняты различные зависимости весов конструкции и двигателей от масштабного множителя n. В качестве исходных при n1 были приняты значения Gдв0/G 0,25 и Gкон0/G0,3; тогда Gпол0/G 0,45. На графике по оси ординат показано относительное изменение полезной нагрузки, т. е. величина Gпол/Gпол 0. Кривая 1 соответствует росту веса двигателя по n2 и веса конструкции по n3.

Рис. 1. Относительное изменение грузоподъемности самолета при изменении его размеров для разных законов зависимости веса конструкции от размеров самолета.

В этом случае максимальная полезная нагрузка будет при n1,67, а при n2,5 полезная нагрузка становится равной нулю вследствие резкого возрастания веса конструкции.

Кривая 2 относится к случаю, когда вес конструкции пропорционален n в степени 8/3, т. е. немного ниже кубичной. Как видно, полезная нагрузка самолета в этом случае значительно возросла и имеет максимум при n2,5.

Кривая 3 была построена при весе конструкции, пропорциональном n в степени 5/2, и это дало увеличение полезной нагрузки в 5,5 раза по сравнению с исходным значением.

Наконец, кривая 4 построена при условии, что вес конструкции меняется тоже пропорционально n5/2, но, кроме того, с ростом n запас мощности понижается так, что вес двигателей будет пропорционален n в степени 5/3. В этом случае максимальная полезная нагрузка оказалась увеличенной более чем в 10 раз по сравнению с исходной при n1. Вес самолета будет увеличен в (5,5)2, т. е. в 30 раз; относительные параметры будут такими: Gдв/G0,14; Gкон/G0,7; Gпол/G0,16.

В последнем случае, хотя и был достигнут максимум полезной нагрузки, но самолет оказался очень неэкономичным из-за относительной малости полезной нагрузки. Мы привели рис. 1, чтобы показать, какой эффект может дать изменение показателей степени.

В той же работе Н. А. Яцук проводит исследование для случая увеличения грузоподъемности самолета при сохранении его размеров, но при увеличении скорости в m раз. В этой задаче он ссылается на французского ученого А. Сее, который опубликовал свою работу в журнале "L'Aerophille" от 15 января 1910 г. Александр Сее был выдающимся ученым того времени, работавшим в области летательных аппаратов. Им было опубликовано много интересных работ в журналах "L'Aerophille" и "La Technique Aeronautique", и они, несомненно, оказали важное влияние на развитие авиационных наук.

Задача о зависимости грузоподъемности от скорости формально не отличается от рассмотренной выше, но только по кубичному закону меняется не вес конструкции, а вес двигателей, так как с ростом скорости мощность должна меняться по кубу скорости, а вес двигателей принимается пропорциональным мощности в первой степени. Можно было бы указать, что это тоже очень грубый расчет, так как с ростом мощности, т. е. при увеличении размеров или числа двигателей, аэродинамическое подобие не соблюдается и при увеличении скорости как мощность, так и вес двигателей будут увеличиваться более сильно, чем по кубичной степени.

Если исходить из постоянства значений G/N и G/S и принять G/N10 и G/S15-30, то мы получим такие выражения для полетного веса и площади крыльев:

Так, при N 50 л. с. вес самолета будет равен ~500 кГ и площадь его крыльев S -- от 16 до 32 м2. Эти значения довольно близки к характеристикам многих самолетов 1910-- 1912 гг.

Перейти на страницу:

Похожие книги

Теория государства и права
Теория государства и права

Учебник, написанный в соответствии с курсом «Теория государства и права» для юридических РІСѓР·ов, качественно отличается РѕС' выходивших ранее книг по этой дисциплине. Сохраняя все то ценное, что наработано в теоретико-правовой мысли за предыдущие РіРѕРґС‹, автор вместе с тем решительно отходит РѕС' вульгаризированных догм и методов, существенно обновляет и переосмысливает РІРѕРїСЂРѕСЃС‹ возникновения, развития и функционирования государства и права.Книга, посвященная современной теории государства и права, содержит СЂСЏРґ принципиально новых тем. Впервые на высоком теоретическом СѓСЂРѕРІРЅРµ осмыслены и изложены РІРѕРїСЂРѕСЃС‹ новых государственно-правовых процессов современного СЂРѕСЃСЃРёР№ского общества. Дается характеристика гражданского общества в его соотношении с правом и государством.Для студентов, аспирантов, преподавателей и научных работников юридических РІСѓР·ов.Р

Алла Робертовна Швандерова , Анатолий Борисович Венгеров , Валерий Кулиевич Цечоев , Михаил Борисович Смоленский , Сергей Сергеевич Алексеев

Детская образовательная литература / Государство и право / Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наука
6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука