Тем не менее все эти методы имеют определенный смысл. Если метод Джефферсона (д’Ондта) исходит из принципа: мандат дается той партии, у которой его «цена» после получения будет наибольшей, то у метода Адамса принцип альтернативный: мандат надо давать той партии, у которой на данный момент «цена» мандата наибольшая. Методы Уэбстера (Сент-Лагю), Хилла и Дина предусматривают различные средние варианты между этими двумя альтернативами. Что касается датского метода, то это некое упрощение методов Хилла и Дина – чтобы не иметь дело со сложными формулами и тем более иррациональными числами.
В обобщенном виде свойства методов делителей представлены в таблице 4.10.
Таблица 4.10. Свойства различных методов делителей
Для любого из истинных методов делителей может быть предложен соответствующий ему метод квот – аналогично методу д’Ондта. Он будет состоять в том, что после первичного распределения мандатов оставшиеся нераспределенными мандаты распределяются по определенному правилу: результат партии делится на определенный делитель и полученные частные округляются по определенному правилу (см. таблицу 4.10).
Поскольку термин «правило наибольшей средней» исторически закреплен за вариантом, соответствующим методу д’Ондта, мы, чтобы не было путаницы, будем называть это более общее правило
В целом указанные методы имеют в основном теоретическое значение, так как для большинства из них нет примеров применения на практике. Однако, как будет показано в подразделе 4.1.9, у некоторых из них есть важные достоинства.
Отдельная проблема для методов квот, соответствующих методам Адамса, Хилла и Дина: что делать с партиями, у которых
В брюссельском примере ни один из рассмотренных выше методов делителей правило квоты не нарушает, поэтому распределение мандатов с помощью этих методов совпадает с распределением мандатов с помощью соответствующих методов квот, основанных на правиле «наибольшего частного». В связи с этим в таблице 4.11 на брюссельском примере приводятся более наглядные расчеты для методов квот. Для демохристиан и независимых расчеты не показаны, но методы, соответствующие методам Сент-Лагю и датскому, также дают им по мандату в первую очередь.
Как видим, методы среднего арифметического и среднего геометрического (Сент-Лагю и Хилла) дают такое же распределение, как и метод Навилля (Хэйра – Нимейера), а три других метода – иное распределение, которое по сравнению с методом Навилля дает дополнительный мандат либералам за счет социалистов.
Таблица 4.11. Распределение мандатов по итогам голосования в брюссельском округе на выборах бельгийского парламента 1900 года с использованием различных вариантов правила «наибольшего частного»
4.1.6. Модификации методов делителей
Помимо истинных методов делителей, описанных в предыдущем подразделе, существуют методы, созданные путем их модификации. В принципе, таких модификаций возможно неограниченное количество. В данном подразделе мы остановимся на трех из них, которые получили практическое применение. Это модифицированный метод Сент-Лагю, метод делителей Империали и тюменский метод.
Зная свойства методов делителей, нетрудно понять, что первый делитель влияет только на распределение первого (для данной партии) мандата. Поэтому основной и модифицированный методы Сент-Лагю дают одинаковые результаты, за исключением тех случаев, когда модифицированный метод не дает какой-либо партии ни одного мандата[454]
.