Если, например, рассматривать комплексообразование с галогенидами, то для различных катионов будет наблюдаться различная закономерность устойчивости образующихся комплексов. Первые константы образования уменьшаются в следующей последовательности:
Таким же образом можно классифицировать не только комплексообразователи, но и лиганды. Отличие надо искать в свойствах их электронной структуры и реакционной способности.
Жесткие частицы
обладают прочной малодеформируемой электронной структурой. Это могут быть атомы элементов с высокой электроотрицательностью (F, O, N) или катионы с большим зарядом. Напротив, мягкие частицы имеют подвижную деформируемую электронную структуру и высокую поляризуемость.Жесткие кислоты
. Электронная оболочка жестких кислот характеризуется высокой стабильностью относительно внешних электрических полей. Наиболее жесткой кислотой является протил, который из-за отсутствия электронной оболочки и чрезвычайно малого радиуса прочно связывается с активным центром молекулы основания. Следовательно, характеризуется наименьшим размером, во внешней сфере нет неподеленной пары электронов. Типичные представители жестких кислот имеют структуру инертного газа Li+, Be2+, Al3+… и относятся, в основном, к элементам главных подгрупп периодической системы. К последним близки по свойствам некоторые катионы переходных металлов с не полностью занятойЖесткие основания
вследствие прочной и устойчивой электронной оболочки, а также соответствующего строения электронных орбиталей не имеют склонности к образованию ковалентных связей с катионом (F-, O2-). Рассматривая реакционную способность воды, как донора пары электронов. Можно отметить, что, например, при гидратации катионов, кислород молекулы вода как раз и является жестким центром. Анионы кислородсодержащих кислот, таких как ClO4-, SO42-, PO43-, CO32- также имеют малодеформируемую структуру.В противоположность, мягкие кислоты
– большие катионы с деформируемой электронной оболочкой (например, элементы главных подгрупп Cs+, Tl+) а также катионы переходных металлов, в электронной оболочке которых имеются неподеленные пары электронов. Способность к поляризуемости у них выше. Мягкость соединений увеличивается по мере уменьшения положительного заряда ионов.Аналогично и мягкие основания
(P3-, S2-, I-, Br-), способность к поляризуемости у которых высока.Анализируя константы устойчивости комплексов, можно сделать вывод, что жесткие кислоты образуют наиболее прочные соединения с жесткими основаниями, а мягкие кислоты – с мягкими основаниями. Большое значение имеет и то, каким образом формируется соответствующее соединение, что определяет молекулярный контакт при образовании этого соединения:
Таким образом, можно провести классификацию комплексообразователей и лигандов (табл.1.2).
Таблица 1.2.
Распределение кислот и оснований по Пирсону.
Актиноиды – типичные жесткие кислоты, для них выполняется следующая зависимость: М4+
> M3+ > MO22+ > МO2+. Жесткие кислоты, взаимодействуя с жесткими основаниями, образуют соединения, прочность которых подчиняется величине ионного потенциала.Приведенное высказывание, что жесткие кислоты предпочтительно ассоциируются с жесткими основаниями, а мягкие кислоты – с мягкими основаниями, не означает, что не могут быть получены соединения жесткой кислоты с мягким основанием и наоборот. Например, CH3
- является мягким основанием, однако легко можно получить соединение типа Mg(CH3)2. Тем не менее это соединение термодинамически неустойчиво в отношении гидролиза, тогда как Hg(CH3)2 устойчиво к гидролизу. Теория жестких и мягких кислот и оснований оказалась полезной для предсказания наиболее стабильных продуктов реакций, для которых не имеется достаточно точных термодинамических характеристик.Некоторые молекулы имеют как жесткие, так и мягкие центры. В диметилсульфоксиде
атом кислорода придает жесткие свойства всему соединению, а атом серы – мягкие свойства. Поэтому жесткие кислоты прочно связываются с атомом O, мягкие кислоты – с атомом S. Подобные свойства реализуются для многих органических соединений, которые используются в экстракционных системах.
С помощью теории жестких и мягких кислот и оснований можно предсказать продукты обменной реакции между солями
LiI + AgF -> LiF + AgI.
В результате реакции, протекающей в растворе или в твердой фазе, образуются более стабильные соединения между жесткой кислотой и жестким основанием LiF и мягкой кислотой и мягким основанием AgI.
Становится понятным, почему происходит стабилизация металлов с высокой степенью окисления (Th4+
, UO22+) жесткими основаниями (F-, OH-, O2-) и наоборот.Таким образом, все ионы металлов стремятся к образованию координационных соединений, вероятно так же и то, что все молекулы и ионы, имеющие по крайней мере одну свободную пару электронов, стремятся к взаимодействию с ионами металлов с образованием комплексов.