В зависимости от способности к комплексообразованию ионы металлов можно разделить на три группы.
1. Ионы металлов с электронной структурой инертного газа, т. е. щелочные, щелочно-земельные, лантаноиды и актиноиды. Все они образуют комплексы со связями электростатического характера. Ионы этих металлов взаимодействуют с анионами небольшого размера, в особенности F-
и с лигандами, содержащими в качестве донорных атомов атомы кислорода. Имеют тенденцию образовывать в водных растворах акво-комплексы и не образуют комплексы с аммиаком, сульфидами и не осаждаются ими. Т. к. связи этих металлов носят прежде всего ионный характер, то устойчивость комплексов тем выше, чем больше электронная плотность на ионе металла (ионный потенциал).2. Ионы переходных металлов с
3. Ионы переходных металлов с частично заполненными
Если реакцию комплексообразования рассматривать как реакцию кислот и оснований Льюиса, то по Пирсону ионы металлов 1 группы представляют собой жесткие кислоты, характеризующиеся низкой поляризуемостью и образующие устойчивые комплексные соединения с жесткими основаниями. Ионы второй группы – мягкие кислоты, образующие устойчивые комплексные соединения с мягкими основаниями. Свойства ионов металлов третьей группы занимают промежуточное положение между свойствами ионов металлов 1 и 2 групп.
Устойчивость комплексов, прежде всего, определяется природой донорного атома лиганда. В роли донорных атомов лигандов могут выступать следующие элементы, расположенные в последовательности повышения электроотрицательности:
As, P C, Se, S, I Br N, Cl O F.
Ионы металлов 1 группы (жесткие кислоты по Пирсону) предпочтительно взаимодействуют с донорными атомами правой части ряда, а ионы металла 2 группы (мягкие кислоты по Пирсону) – с донорными атомами левой части ряда.
Наиболее устойчивые комплексные соединения образуются с хелатообразующими лигандами.
Внутрикомплексные соединения
Катионы металлов имеют несколько вакантных орбиталей для образования связи с лигандами, например, Zn имеет 4 таких орбитали. Однако, такие лиганды, как хлорид, бромид, цианид, аммиак могут занимать только одно координационное место. Каждый и этих лигандов отдает одну неподеленную пару электронов центральному атому. Такие лиганды называются монодентатными (
Существуют лиганды, которые называются полидентатными, которые могут предоставить две или более электронных пар центральному атому для образования комплекса. Комплекс, состоящий из центрального атома и одного или нескольких полидентатных лигандов, называется хелатным соединением или хелатом. В некотором смысле две или более электродонорных групп каждого лиганда действуют как клешни, захватывающие центральный атом при образовании связи с ним. Таким образом, полифункциональные молекулы или ионы могут присоединяться к центральному атому металла более, чем одним атомом группы. Термин «хелат» первоначально использовали для обозначения бидентатного характера группы, но впоследствии он был перенесен на все полидентатаные лиганды, и стал применяться, как для названия хелатной группы, так и для комплекса в целом.
Примеры лигандов различной дентатности.
1. Монодентатные лиганды: H2
O, NH3, Cl-, CN-…2. Бидентатные лиганды: SO4
2-, CO32-, C2O42-, NH2 – C2H4 – NH2 (этилендиамин).3. Тридентатные лиганды: диацетоамин
и далее вплоть до октадентатных.