Читаем Избранные научные труды полностью

Обратимся к дальнейшей наглядной интерпретации наших расчётов; подставим в выражение для 2a значение W соответствующее n-му стационарному состоянию. Находим


2a

=

n^2

e^2

chR

=

h^2

2^2me^2

=

n^2·1,1·10

-8

.


(8)


Мы видим, что для малых значений n размеры большой оси электронной орбиты оказываются того же порядка величины, что и диаметр атома, вычисляемый в кинетической теории газов. Для больших значений n величина 2a становится очень большой по сравнению с вычисленными размерами атомов. Такой результат не стоит, однако, в безусловном противоречии с опытом. Мы можем себе представить, что при обычных обстоятельстствах атом водорода находится лишь в состоянии, соответствующем n = 1 В этом состоянии W имеет наибольшее значение, и атом отдаёт наибольшую энергию; это состояние наиболее устойчивое: без затраты внешней энергии система не может перейти из него в какое-либо другое состояние. Поэтому большие значения 2a для больших n не противоречат опыту. Эти большие значения объясняют, может быть, то обстоятельство, что в лабораторных опытах не удается наблюдать спектральные линии водорода, соответствующие большим значениям n в формуле Бальмера; эти линии наблюдаются, однако, в спектрах некоторых небесных тел. Только при очень низких давлениях большие электронные орбиты не будут возмущаться электрическими силами соседних атомов; давление должно быть столь низким, что в гейслеровской трубке обычных размеров мы не получим свечения достаточной яркости. Однако можно предполагать, что на небесных телах водород находится в крайнем разрежении на огромных пространствах.

Вы, по-видимому, заметили, что мы до сих пор не говорили о том спектре, который был найден на некоторых звёздах и который обычно приписывается водороду; по Ридбергу, он образует одну взаимосвязанную систему линий с обычным водородным спектром в полной аналогии со спектрами других элементов. Быть может, вы обратили внимание на то, что этот спектр трудно согласуется с предположениями, которыми мы пользовались. Для согласования нам пришлось бы отказываться от тех простых соображений, которые привели к выражению (7) для постоянной R. Мы увидим, однако, что есть и другой путь для объяснения возникновения названного спектра. Предположим, что этот спектр отвечает не атому водорода, но другой простой системе, образованной из одного электрона, вращающегося вокруг ядра с электрическим зарядом Ne Выражение для в этом случае будет


^2

=

2

^2


W3

N2e4m

.


Повторяя те же рассуждения, что и прежде, только в обратном порядке, мы приходим к результату, что рассматриваемая система должна испускать излучение, имеющее линейчатый спектр, определяемый формулой


1

=

22N2e4m

ch3



1

n12

-

1

n22


=

R


1

(n1/N)2

-

1

(n1/N)2


.


(9)


Сравнивая (9) с формулой для серий Пикеринга и Ридберга, мы видим, что обнаруженные линии могут быть объяснены теоретически, если предположить, что эти линии обязаны своим происхождением электрону, вращающемуся вокруг ядра с зарядом 2e т.е., согласно теории Резерфорда, ядра атома гелия. Объяснить отсутствие этого спектра в обычной гелиевой трубке и наличие его на звёздах можно тем, что для возникновения его требуется высокая степень ионизации; нейтральный атом гелия имеет два электрона, в рассмотренной же системе — только один электрон.

Эти выводы, по-видимому, подтверждаются опытом. Я уже говорил, что английскому физику Фаулеру удалось недавно наблюдать линии Пикеринга и Ридберга в лабораторных экспериментах. Пропуская сильный электрический разряд через трубку со смесью водорода и гелия, Фаулер наблюдал не только эти линии, но также и новую серию, находящуюся в простом отношении к линиям Пикеринга и Ридберга; длины волн новых линий могут быть представлены приближённо формулой


1

=

R


1

(3/2)^2

-

1

(n+ 1/2 )^2


.


Фаулер истолковал все наблюдавшиеся линии как принадлежащие водороду. Однако открытие последней серии линий разрушило аналогию между спектром водорода и спектрами других элементов и тем самым основы выводов Ридберга. В то же время можно видеть, что появление упомянутых спектральных линий можно было ожидать на основании изложенного выше толкования спектра.

В приведённой здесь табл. 2 в первом столбце даны длины волн, измеренные Фаулером, во втором — указанные им пределы ошибок наблюдения; в третьем столбце даны произведения длины волны на фактор [(1/n12)-(1/n22)]·1010, в скобках указаны использованные значения n1 и n2.

Мы видим, что эти произведения с большой точностью постоянны, отклонения соответствуют порядку величины приведённых пределов ошибок наблюдения.


Таблица 2


·10

8

Предел


ошибок


·


1

n12

-

1

n22


·10

10


4685,98

0,01

22779,1

(3; 4)


3203,30

0,05

22779,0

(3; 5)


2733,34

0,05

22777,8

(3; 6)


2511,31

0,05

22778,3

(3; 7)


2385,47

0,05

22777,9

(3; 8)


2306,20

0,10

22777,3

(3; 9)


2252,88

0,10

22779,1

(3;10)


5410,5

1,0

22774

(4; 7)


4541,3

0,25

22777

(4; 9)


4200,3

0,5

22781

(4;11)


По формуле (9), выведенной нами для спектра, произведение


·


1

n12

-

1

n22



Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии