Читаем Избранные труды полностью

На втором этапе развития понятия скорости осознается роль третьего тела — земли или места. Ситуация, т.е. система отношений, отражавшаяся в понятии (в его содержании отражалась исследуемая сторона объекта, а в его строении в «снятом» виде — опосредствующие отношения), расчленяется, дифференцируется. Вырабатываются абстракции пути и времени. (Мы оставляем в стороне вопрос о том, как образуются эти абстракции.) Различие скоростей двух движений начинают сознательно выражать в сравнительной оценке длин пройденного за одно и то же время пути или в сравнительной оценке времени, затраченного на то, чтобы пройти один и тот же путь. Так, например, Аристотель пишет, что более скорому из двух тел необходимо «в равное время двигаться больше другого, в меньшее одинаково или в меньшее больше, как и определяют некоторые слово "скорее"» [Аристотель, 1937 с, VI, с. 126). И в другом месте: «... Если всякое тело должно двигаться (по одному и тому же пути. — Г. Щ.) или равное время с другим, или меньшее, или большее и двигающееся больше времени является более медленным,

__________________________________

2 «Естественным» эталоном и измерителем скорости движения для человека служат движение его глаз и «упражненное мышечное чувство, сопровождающее передвижение глаз» [Сеченов, 1947, с. 348]. Наличие такого «естественного» эталона, возможность фиксировать «мышечные восприятия» и сохранить их в памяти позволяют нам сопоставлять различные движения и относить их к движению глаза даже в том случае, когда эти движения не совпадают во времени и пространстве [Бернштейн, 1957, с.87]. Но это ничего не меняет в строении понятия скорость, оставляя его чувственно-непосредственным.

Конец страницы 579

Начало страницы 580

равное время равноскоростным, а более скорое не является ни тем, ни другим, то оно будет двигаться ни больше, ни равное время. Остается, следовательно, меньшее...» (там же, с. 127).

При этом нужно отметить, что время как таковое не измерялось. В первом случае время прямо фиксировали как равное и сравнивали между собою отрезки пути, а во втором — выделяли определенный отрезок пути и следили, какое из тел достигает его конца раньше, какое позже. В обоих случаях, таким образом, движения сопоставляли не по отношениям пути ко времени, а только по одной компоненте этих отношений, чаще всего по проходимому телом расстоянию, предполагая вторую компоненту — время — одинаковой для обоих движений и фактически оставляя ее в стороне.

Необходимость сравнивать между собой различные длины на определенном этапе развития общественной практики и мышления привела к появлению эталона длины. Пройденные телами расстояния стали обозначаться числами. Способ сопоставления движений по-прежнему оставался чувственно-непосредственным, так как вплоть до Галилея не существовало часов, пригодных для измерения небольших промежутков времени, и последнее всегда приходилось фиксировать как равное для двух движений путем непосредственно-зрительного их сопоставления. Однако сопоставление и измерение сложного отношения — движения — удалось свести к сравнению и измерению более простого отношения — расстояний, что позволило выразить «отношение движений» в числовых величинах


s1/ s2= (1)


При этом числовая величина показывала: непосредственно — во сколько раз больше путь, пройденный за определенное время одним телом, чем путь, пройденный за то же время другим телом; опосредствованно — во сколько раз больше скорость движения одного тела, чем скорость движения другого.

Третий этап в развитии понятия скорости, связанный с именем Галилея (XVII век), характеризуется введением эталона движения — часов3. В

______________________________________

3 Механических часов, пригодных для измерения небольших промежутков времени, тогда еще не было. Создание их стало возможным лишь на основании данных динамики, разработанной Галилеем. В то время в употреблении были по большей части водяные и песочные часы. И вот Галилей сумел приспособить такого рода часы к измерению небольших промежутков времени. Примененные им часы состояли из наполненного водой сосуда большого поперечника с маленьким отверстием в дне, которое он закрывал пальцем. Когда какое-либо тело в эксперименте начинало свое движение, Галилей, отняв палец, открывал сосуд и выпускал воду на весы. Когда тело достигало конца своего пути, он закрывал сосуд. Так как давление жидкости вследствие большого поперечника сосуда мало изменялось, то вес вытекшей воды был пропорционален времени истечения и последнее можно было таким образом измерять.

Конец страницы 580

Начало страницы 581

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука