Читаем Избранные труды полностью

Второй путь разработки новых средств исследования предполагает теорию самих методов, «методологию». В этом случае специалист-

________________________________________

1 «Искусство» в том значении этого слова, которое оно имело в средние века: искусное, т.е. очень умелое, совершенное выполнение работы, основанное на богатом эмпирическом опыте; в таком смысле это слово сейчас часто употребляют кибернетики, например Л.Куффиньяль [Куффиньяль, 1963].

 Конец страницы 157 

 Начало страницы 158 

предметник комбинирует не просто что придется, что попало «под руку», а в соответствии с имеющимися у него знаниями о всех существующих в это время средствах и их отношении к задачам. Он пытается перенести не любые средства из других наук, а только те, о которых он знает, что они могут подойти для решения вставших перед ним задач и описания заданных ему объектов; в случае необходимости он создает новые средства, заранее зная, подобно инженеру, создающему машины, какими они должны быть.

Но какой должна быть сама методология науки, ее знания, чтобы обеспечить подобную работу по созданию средств научного исследования?

Существуют две основные точки зрения на этот счет.

Представитель первой точки зрения (ее можно назвать «натурфилософской») считает, что предмет методологии — природа, мир как таковые. С этой стороны методолог, на его взгляд, ничем не отличается от специалиста-предметника. Например, физик анализирует физические процессы в объектах, и ученый, работающий в области методологии физики, тоже должен изучать эти же физические процессы. Разница между ними заключается только в том, что физик будет изучать физические процессы конкретно, опираясь, с одной стороны, на экспериментальные методы, с другой стороны — на аппарат математики, а методолог будет изучать физические процессы «в общем», выделяя их «общие» стороны и свойства. По убеждению натурфилософа, понятия, вырабатываемые при таком «общем подходе» к физическим процессам, могут служить методами для конкретного физического исследования.

Представитель второй точки зрения (ее можно назвать «теоретико-познавательной») считает, что предмет методологии как науки принципиально отличен от предмета всех других конкретных наук; это — деятельность познания, мышление, или, если говорить более точно, вся деятельность человечества, включая сюда не только собственно познание, но и производство. Можно сказать, что методология, на его взгляд, есть теория человеческой деятельности. Именно поэтому методологические знания могут служить руководством при поисках и выработке новых средств научного исследования: ведь они описывают и даже заранее проектируют ту деятельность, которую нужно для этого осуществить.

По-видимому, только теоретико-познавательная точка зрения на методологию оправдывает ее выделение в качестве действительной науки. Чтобы описать условия, в которых выделяются специфически методологические проблемы, рассмотрим в схематизированном виде особые ситуации, складывающиеся в ходе развития науки, — так называемые «антиномии», или «парадоксы».

Их общая логическая схема может быть представлена очень просто. Определенный объект А, являющийся образцом и эталоном класса, анализируется сначала посредством процедуры Δ1 и выступает как

 Конец страницы 158 

 Начало страницы 159 

обладающий свойством В; потом этот же объект анализируется посредством другой процедуры Δ2 и выступает как обладающий свойством не-В. При проверке обнаруживается, что процедуры выполнены правильно, что они обе в равной мере могут быть применены к этому объекту и при данном уровне развития науки не удается выявить того свойства в объекте, которое обусловливает столь странные результаты исследования. Таким образом, оба знания «А есть В» и «А есть не-В», полученные соответственно с помощью процедур Δ1, и Δ2, оказываются одинаково обоснованными и «правильными», и это создает особую ситуацию «разрыва» в развитии науки.

Уже в древнегреческий период была зафиксирована масса подобных ситуаций (они назывались «апориями») в самых различных науках — в математике, физике, философии.

Например, записывался натуральный ряд чисел, в нем выделялись числа — «полные квадраты»; они сопоставлялись со всем рядом:


12345678910111213141516...
14916...


Совершенно очевидно, что при таком способе сопоставления чем дальше мы будем двигаться по ряду, тем меньшим будет «вес» полных квадратов по сравнению со всеми другими числами. Из этого делали вывод, что число полных квадратов в ряду натуральных чисел меньше, чем число всех чисел. Но затем предлагался другой способ сопоставления: каждому числу натурального ряда ставился в соответствие его квадрат


12345678
1491625364964


Было очевидно, что сколько бы мы ни двигались так по ряду, мы всегда сможем это сделать. Из этого делали вывод, что число полных квадратов в бесконечном ряду чисел не меньше числа всех чисел.

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука