Читаем Избранные труды полностью

Таким образом, применяя два различных способа рассуждения — и заметим: правильных с точки зрения существовавших тогда понятий, — мы приходим к двум различным, взаимно исключающим друг друга утверждениям.

Могут попробовать возразить, что эти утверждения не были правильными, так как к бесконечным множествам, с точки зрения современной математики, не могут применяться понятия «больше», «меньше», «равно», а должны применяться понятия «мощности» и связанные с ними процедуры сопоставления2. Это правильно. Но мы знаем это сегодня, а

_____________________________________

2 Понятие «мощности» множества было введено знаменитым немецким математиком Г.Кантором [Кантор, 1914].

 Конец страницы 159 

 Начало страницы 160 

когда этот вопрос встал и когда его обсуждали, начиная, по-видимому, с Демокрита и вплоть до работ Г.Кантора, понятия мощности множества не существовало и приходилось пользоваться теми понятиями, которые были. Кроме того, даже и с этой модернизированной точки зрения нужно признать, что оба утверждения по поводу числа полных квадратов в ряду натуральных чисел находятся в совершенно равных условиях — оба являются одинаково ложными или одинаково истинными. Только это важно в контексте данного рассуждения: возникала ситуация, в которой два знания исключали друг друга и оба были одинаково правильными, и из этой ситуации нужно было выходить, создавая новые средства науки.

Чтобы снять возможное впечатление, будто парадоксальная ситуация возникает из-за оперирования «трудным» и немного мистическим понятием бесконечности, разберем еще пример физического парадокса, выявленного Г.Галилеем примерно через две тысячи лет после появления разобранного выше математического парадокса.

Различие между равномерными и переменными движениями стало известно людям уже давно. Но это было лишь наглядное, чувственное знание, не осмысленное в понятиях. Существовавший во времена Аристотеля чувственно-непосредственный способ сопоставления движений, когда время фиксировалось как равное, а сравнивались одни лишь отрезки пройденного телами пути, не позволял выявить различие между равномерными и переменными движениями в виде понятия.

И хотя в представлении древних понятие скорости было результатом и средством сопоставления движений вообще, независимо от их характера, по содержанию и по своему строению оно служило адекватным отражением только равномерных движений. Поэтому когда Галилей приступил к исследованию ускоренных движений, используя для этого понятие скорости, выраженное в формуле v = s/t, то это привело его к логическому противоречию (антиномии). Так как часы, находившиеся в его распоряжении, несмотря на все произведенные усовершенствования, были все еще малопригодны для измерения небольших промежутков времени, Галилей решил замедлить исследуемые движения падения с помощью наклонных плоскостей, а это в свою очередь заставило его сопоставить между собой падение тел по вертикали и по наклонным. Согласно определениям Аристотеля, из двух движущихся тел то имеет большую скорость, которое проходит за одно и то же время большее пространство, чем другое, или то же пространство, но за меньшее время. Соответственно считалось, что два движущихся тела обладают одинаковой скоростью, если они проходят равные пространства в равные промежутки времени.

Галилея эти определения уже не удовлетворяли. Выработанный им способ измерения времени позволил представить понятие скорости в виде математического отношения величин пути и времени. С этой новой

 Конец страницы 160 

 Начало страницы 161 

точки зрения ничего не изменится, если назвать скорости равными и тогда, «когда пройденные пространства находятся в таком же отношении, как и времена, в течение которых они пройдены...» [Галилей, 1948, с. 34]. Поскольку Галилей уже «подвел» понятие скорости под более широкое понятие математического отношения, сделанный им переход был вполне законен. Равенство отношений s1/t1 = s2/t2 как при s1 = s2 так и при s1  s2 остается справедливым, если t1 и t2 меняются в той же пропорции, что и пути.

Итак, имеются два определения равенства скоростей двух движущихся тел.

Первое: скорости двух тел равны, если за равные промежутки времени эти тела проходят равные пространства.

Второе: скорости двух тел равны, если пространства, проходимые одним и другим, пропорциональны временам прохождения.

Второе определение является обобщением первого. Имея эти два определения, Галилей приступил к сопоставлению конкретных случаев падения тел. Пусть по СВ и СА (см. схему 1) падают два одинаковых тела. Скорость тела, падающего по СВ, будет больше скорости тела, падающего по СА, ибо, как показывает опыт, в течение того времени, за которое первое падающее тело пройдет весь отрезок СВ, второе пройдет по наклонной СА часть CD, которая будет меньше СВ. Отсюда в соответствии с первым определением можно сделать вывод, что скорости тел, падающих по наклонной и по вертикали, не равны.

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука