Это сжатие можно определить ещё с помощью неравенства лунного движения по долготе, которое зависит от долготы лунных узлов. Наблюдения указали на это Майеру, и Мейсон установил его величину в 23.
сс765 [7."70]. Но так как оно не казалось вытекающим из теории тяготения, большинство астрономов игнорировали это неравенство. Однако эта теория показала мне, что его причина лежит в сжатии Земли. Бюрг и Буркхардт из большого числа наблюдений установили его величину в 20.сс987 [6."80], что соответствует сжатию 1/305.05, т.е. почти такому же, какое даёт предыдущее неравенство движения по широте. Итак, по наблюдениям движений Луны усовершенствованная астрономия обнаружила эллиптичность Земли, шаровидность которой первые астрономы узнали по наблюдениям её затмений.Два предыдущих неравенства заслуживают всяческого внимания астрономов. Перед геодезическими измерениями они имеют то преимущество, что сжатие Земли они представляют способом, менее зависящим от неправильности её фигуры. Если бы Земля была однородна, эти неравенства были бы значительно больше, чем следует из наблюдений, которые, следовательно, исключают эту однородность. Ещё из этих наблюдений следует, что сила притяжения Луны к Земле складывается из притяжения всех молекул этой планеты, что доставляет новое доказательство того, что притягиваются все частицы материи.
Теория в сочетании с опытами над маятниками и градусными измерениями, как мы видели в первой книге, даёт параллакс Луны, очень близкий к наблюдениям, так что можно было бы обратным путём из этих наблюдений определить размеры Земли.
Наконец, с помощью лунного уравнения по долготе, зависящего просто от углового расстояния Лупы от Солнца, можно точно определить солнечный параллакс. Для этого я с особой тщательностью вычислил коэффициент этого уравнения и, приравняв его к коэффициенту Буркхардта и Бюрга, который они нашли из сравнения большой серии наблюдений, вывел средний солнечный параллакс, равный 26.
сс58 [8."6], т.е. такой же, какой многие астрономы определили из последнего прохождения Венеры.11Замечательно, что астроном, не выходя из своей обсерватории, а лишь сравнивая свои наблюдения с результатами математического анализа, смог точно определить размеры и сжатие Земли, а также её расстояние от Солнца и Луны, т.е. те элементы, определение которых было плодом долгих и трудных путешествий по обоим полушариям Земли. Согласие результатов, полученных этими двумя методами, является одним из наиболее поразительных доказательств всемирного тяготения.
Наши лучшие лунные таблицы основаны на теории и на наблюдениях. Из теории они заимствуют аргументы неравенств, которые было бы очень трудно узнать из одних только наблюдений. В моем «Трактате о небесной механике» я определил коэффициенты этих аргументов с очень большим приближением. Но малая сходимость приближений и трудность выделения из огромного числа тех членов, даваемых анализом, которые при интегрировании могут достичь заметной величины, делает очень трудными поиски этих коэффициентов. Сама природа даёт нам в собрании наблюдений результаты этих интегрирований, с таким трудом получаемых из анализа. Для их определения Буркхардт и Бюрг использовали многие тысячи наблюдений и таким путём придали высокую точность своим лунным таблицам. Желая изгнать всякий эмпиризм и предложить другим геометрам обсудить многие сложные вопросы теории, к которым я подошёл первым, такие, например, как вековые уравнения движения Луны, я добился от Академии наук, чтобы она предложила темой работы по математике на премию 1820 г. составление на основании одной только теории лунных таблиц, столь же совершённых, какие были составлены путём совместного применения теории и наблюдений. Академией были награждены две работы. Автор одной из них, г-н Дамуазо, сопроводил её таблицами, которые при сравнении с наблюдениями представили их с точностью наших лучших таблиц. Авторы обеих работ сходятся относительно периодических и вековых неравенств движения Луны. Их результаты немного отличаются от моего в определении векового уравнения среднего движения; но вместо чисел 1, 4, 0.265, которыми я представил отношения вековых уравнений движения Луны относительно Солнца, перигея лунной орбиты и её узлов, они нашли числа 1, 4.6775, 0.391. Г-н Дамуазо в своей работе дал второе из этих чисел очень близким к 4, но, пересмотрев свои вычисления с особой тщательностью, он пришёл к результату г-д Плана и Карлини — авторов второй работы. Так как они очень далеко продвинули приближения, их числа, вероятно, предпочтительнее, чем определённые мной. К тому же эти приближения дали им движения перигея и узлов лунной орбиты, в точности совпадающие с наблюдениями.